Solveeit Logo

Question

Question: What is the derivative of \[{{\tan }^{2}}(3x)\] ?...

What is the derivative of tan2(3x){{\tan }^{2}}(3x) ?

Explanation

Solution

Students should use CHAIN RULE while solving this problem. Derivative of tanx\tan x is sec2x{{\sec }^{2}}x i.e ddxtana=sec2adadx\dfrac{d}{dx}\tan a={{\sec }^{2}}a\dfrac{da}{dx} .Students should know all the derivative differentiation formulas for solving this kind of questions.

Complete step-by-step solution:
By reading the question carefully we came to know that we have to find the derivative of tan2(3x){{\tan }^{2}}(3x).
So let us consider given equation tan2(3x){{\tan }^{2}}(3x) as yy
So y=tan2(3x)y={{\tan }^{2}}(3x)…………eq(1)
Now it's clear that we have to find dydx\dfrac{dy}{dx}. Where y=tan2(3x)y={{\tan }^{2}}(3x).
So let us proceed the calculation by multiplying POWERS by 12\dfrac{1}{2} on both sides i.e LHS & RHS.
So we get the equation as
y1×12=tan2×12(3x){{y}^{1\times \dfrac{1}{2}}}={{\tan }^{2\times \dfrac{1}{2}}}(3x).
On simplification we get,
y12=tan(3x){{y}^{\dfrac{1}{2}}}=\tan (3x)
Now let us differentiate the whole equation with respect to yy. i.e we have to differentiate both LHS & RHS with respective to yy,
So we get equation as
ddxy12=ddxtan(3x)\dfrac{d}{dx}{{y}^{\dfrac{1}{2}}}=\dfrac{d}{dx}\tan (3x)
We know from the basic derivative formulas that ddxan=n×an1dadx\dfrac{d}{dx}{{a}^{n}}=n\times {{a}^{n-1}}\dfrac{da}{dx} and ddxtana=sec2adadx\dfrac{d}{dx}\tan a={{\sec }^{2}}a\dfrac{da}{dx}.
So now we can write ddxy12=12y12dydx\dfrac{d}{dx}{{y}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{y}^{-\dfrac{1}{2}}}\dfrac{dy}{dx} and ddxtan(3x)=sec2(3x)ddx3x\dfrac{d}{dx}\tan (3x)={{\sec }^{2}}(3x)\dfrac{d}{dx}3x
So we get new equation as
12y121dydx=sec2(3x)ddx3x\dfrac{1}{2}{{y}^{\dfrac{1}{2}-1}}\dfrac{dy}{dx}={{\sec }^{2}}(3x)\dfrac{d}{dx}3x
from the basic derivative formulas that ddxka=k×dadx\dfrac{d}{dx}ka=k\times \dfrac{da}{dx} where k=k=constant
so now we can write
ddx(3x)=3×dxdx\dfrac{d}{dx}(3x)=3\times \dfrac{dx}{dx}
ddx(3x)=3×1\dfrac{d}{dx}(3x)=3\times 1 where dxdx=1\dfrac{dx}{dx}=1
So now we get new equation as
12y12dydx=sec2(3x)×3×dxdx\dfrac{1}{2}{{y}^{-\dfrac{1}{2}}}\dfrac{dy}{dx}={{\sec }^{2}}(3x)\times 3\times \dfrac{dx}{dx}
On simplification we get equation as
121ydydx=sec2(3x)×3×1\dfrac{1}{2}\dfrac{1}{\sqrt{y}}\dfrac{dy}{dx}={{\sec }^{2}}(3x)\times 3\times 1
Now multiply with 2y2\sqrt{y} on both sides
Now we will equation as
2y×121ydydx=sec2(3x)×3×2y2\sqrt{y}\times \dfrac{1}{2}\dfrac{1}{\sqrt{y}}\dfrac{dy}{dx}={{\sec }^{2}}(3x)\times 3\times 2\sqrt{y}…………..(2)
On simplification we get
From eq(1) we know that y=tan2(3x)y={{\tan }^{2}}(3x)
Now let's replace y=tan2(3x)y={{\tan }^{2}}(3x) in eq(2)
So,
dydx=sec2(3x)×6×tan2(3x)\dfrac{dy}{dx}={{\sec }^{2}}(3x)\times 6\times \sqrt{{{\tan }^{2}}\left( 3x \right)}
From the basic formula we know that x2=x\sqrt{{{x}^{2}}}=x we can write tan2(3x)=tan(3x)\sqrt{{{\tan }^{2}}\left( 3x \right)}=\tan (3x)
So now we get new equation as
dydx=sec2(3x)×6×tan(3x)\dfrac{dy}{dx}={{\sec }^{2}}(3x)\times 6\times \tan (3x)
On arranging terms we get the final answer as
dydx=6×sec2(3x)×tan(3x)\dfrac{dy}{dx}=6\times {{\sec }^{2}}(3x)\times \tan (3x).

Note: Students should know all basic derivative formulas. We should try to avoid calculation mistakes because small mistakes in calculations can lead to major errors. Also, the possible mistake we can make while solving the question is misreading the question tan2(3x){{\tan }^{2}}(3x) as tan(3x)2\tan {{(3x)}^{2}} and then solving it wrong.