Solveeit Logo

Question

Question: What is the derivative of \({{\tan }^{-1}}\left( 2x \right)\)?...

What is the derivative of tan1(2x){{\tan }^{-1}}\left( 2x \right)?

Explanation

Solution

In this problem we need to find the derivative of the given value. For this we are going to use a substitution method and take u=2xu=2x as substitution. Now we will consider the substitution and differentiate the equation in order to have the value of dudx\dfrac{du}{dx}. After having the value of dudx\dfrac{du}{dx}, we will substitute the assumed substitution in the given function and differentiate it with respect to xx and use some differentiation formulas like ddx(tan1x)=11+x2\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}to get the required result.

Complete step by step solution:
Given function is tan1(2x){{\tan }^{-1}}\left( 2x \right).
Considering the substitution u=2xu=2x for the above function.
Differentiating the equation u=2xu=2x with respect to xx, then we will have
dudx=ddx(2x) dudx=2dxdx dudx=2 \begin{aligned} & \dfrac{du}{dx}=\dfrac{d}{dx}\left( 2x \right) \\\ & \Rightarrow \dfrac{du}{dx}=2\dfrac{dx}{dx} \\\ & \Rightarrow \dfrac{du}{dx}=2 \\\ \end{aligned}
Substituting the equation u=2xu=2x in the given function, then we will get
tan1(2x)=tan1(u){{\tan }^{-1}}\left( 2x \right)={{\tan }^{-1}}\left( u \right)
Differentiating the above equation with respect to xx, then we will have
ddx(tan1(2x))=ddx(tan1u)\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( 2x \right) \right)=\dfrac{d}{dx}\left( {{\tan }^{-1}}u \right)
Applying the differentiation formula ddx(tan1x)=11+x2\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}} in the above equation, then we will get
ddx(tan1(2x))=11+u2dudx\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( 2x \right) \right)=\dfrac{1}{1+{{u}^{2}}}\dfrac{du}{dx}
Substituting the values u=2xu=2x, dudx=2\dfrac{du}{dx}=2 in the above equation, then we will have
ddx(tan1(2x))=11+(2x)2×2\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( 2x \right) \right)=\dfrac{1}{1+{{\left( 2x \right)}^{2}}}\times 2
Simplifying the above equation by using basic mathematical operations, then we will get
ddx(tan1(2x))=21+4x2\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( 2x \right) \right)=\dfrac{2}{1+4{{x}^{2}}}

Hence the differentiation value of the given function tan1(2x){{\tan }^{-1}}\left( 2x \right) is 21+4x2\dfrac{2}{1+4{{x}^{2}}}.

Note: For this problem we can also use another method which is direct method. In this method we will use the formula ddx(f(g(x)))=f(g(x))×g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right), ddx(tan1x)=11+x2\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}. By applying these formulas, we can get the value of ddx(tan1(2x))\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( 2x \right) \right) as
ddx(tan1(2x))=11+(2x)2×ddx(2x)\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( 2x \right) \right)=\dfrac{1}{1+{{\left( 2x \right)}^{2}}}\times \dfrac{d}{dx}\left( 2x \right)
Simplifying the above equation, then we will get
ddx(tan1(2x))=21+4x2\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( 2x \right) \right)=\dfrac{2}{1+4{{x}^{2}}}
From both the methods we got the same result.