Solveeit Logo

Question

Question: What is the derivative of \(\sqrt{{{x}^{3}}}\)?...

What is the derivative of x3\sqrt{{{x}^{3}}}?

Explanation

Solution

We try to form the indices formula for the value 2. This is a square root of x3{{x}^{3}}. We take the indices form of x3{{x}^{3}}. We multiply the fraction with 3 to find the simplified form. Then we use the formula of ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} to find the derivative of x3\sqrt{{{x}^{3}}}.

Complete step by step solution:
We need to find the value of the algebraic form of x3\sqrt{{{x}^{3}}}. This is a square root form.
The given value is the form of indices. We are trying to find the root value of x3{{x}^{3}}.
We know the theorem of indices a1n=an{{a}^{\dfrac{1}{n}}}=\sqrt[n]{a}. Putting value 2 we get a12=a2{{a}^{\dfrac{1}{2}}}=\sqrt[2]{a}.
Therefore, x3=(x3)12\sqrt{{{x}^{3}}}={{\left( {{x}^{3}} \right)}^{\dfrac{1}{2}}}. We know that (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}.
So, we get x3=(x3)12=x32\sqrt{{{x}^{3}}}={{\left( {{x}^{3}} \right)}^{\dfrac{1}{2}}}={{x}^{\dfrac{3}{2}}} .
Now we find the derivative of x32{{x}^{\dfrac{3}{2}}}.
We use the derivative formula of ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}.
We find ddx(x32)=32x321=32x12=3x2\dfrac{d}{dx}\left( {{x}^{\dfrac{3}{2}}} \right)=\dfrac{3}{2}{{x}^{\dfrac{3}{2}-1}}=\dfrac{3}{2}{{x}^{\dfrac{1}{2}}}=\dfrac{3\sqrt{x}}{2}.
Therefore, the derivative of x3\sqrt{{{x}^{3}}} is 3x2\dfrac{3\sqrt{x}}{2}.

Note:
The derivative form of ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} is applicable for all values of n\in \mathbb{R} - \left\\{ 0 \right\\}. We also could have used chain rule where we need remember that in the chain rule dd[h(x)][goh(x)]×d[h(x)]dx\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}, we aren’t cancelling out the part d[h(x)]d\left[ h\left( x \right) \right].