Solveeit Logo

Question

Question: What is the derivative of \(\sqrt{{{x}^{2}}+1}\)?...

What is the derivative of x2+1\sqrt{{{x}^{2}}+1}?

Explanation

Solution

Assume the function x2+1{{x}^{2}}+1 as f(x)f\left( x \right) and write x2+1\sqrt{{{x}^{2}}+1} as f(x)\sqrt{f\left( x \right)}. Now, use the chain rule of differentiation to differentiate the function. First differentiate the function f(x)\sqrt{f\left( x \right)} with respect to the function f(x)f\left( x \right) and then differentiate the function f(x)f\left( x \right) with respect to x. Finally we will take the product of these two derivatives to get the answer. The formula is given as d[f(x)]dx=d[f(x)]d[f(x)]×d[f(x)]dx\dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{dx}=\dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{d\left[ f\left( x \right) \right]}\times \dfrac{d\left[ f\left( x \right) \right]}{dx} . Use the formula d[f(x)]d[f(x)]=12f(x)\dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{d\left[ f\left( x \right) \right]}=\dfrac{1}{2\sqrt{f\left( x \right)}} to simplify the first part.

Complete step-by-step solution:
Here we have been provided with the function x2+1\sqrt{{{x}^{2}}+1} and we are asked to find its derivative. Here we will use the chain rule of derivative to get the answer. Assuming the function x2+1{{x}^{2}}+1 as f(x)f\left( x \right) we have the function x2+1\sqrt{{{x}^{2}}+1} of the form f(x)\sqrt{f\left( x \right)}. So we have,
x2+1=f(x)\Rightarrow \sqrt{{{x}^{2}}+1}=\sqrt{f\left( x \right)}
On differentiating both the sides with respect to x we get,
d(x2+1)dx=d(f(x))dx\Rightarrow \dfrac{d\left( \sqrt{{{x}^{2}}+1} \right)}{dx}=\dfrac{d\left( \sqrt{f\left( x \right)} \right)}{dx}
Now, according to the chain rule of derivative first we have to differentiate the function f(x)\sqrt{f\left( x \right)} with respect to f(x)f\left( x \right) and then we have to differentiate f(x)f\left( x \right) with respect to x. Finally, we need to consider their product to get the relation. So we get,
d[f(x)]dx=d[f(x)]d[f(x)]×d[f(x)]dx\Rightarrow \dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{dx}=\dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{d\left[ f\left( x \right) \right]}\times \dfrac{d\left[ f\left( x \right) \right]}{dx}
The derivative of f(x)\sqrt{f\left( x \right)} with respect to f(x)f\left( x \right) is given by the formula d[f(x)]d[f(x)]=12f(x)\dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{d\left[ f\left( x \right) \right]}=\dfrac{1}{2\sqrt{f\left( x \right)}}, so we get,
d[f(x)]dx=12f(x)×d[f(x)]dx\Rightarrow \dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{dx}=\dfrac{1}{2\sqrt{f\left( x \right)}}\times \dfrac{d\left[ f\left( x \right) \right]}{dx}
Substituting the value of f(x)f\left( x \right) we get,
d[x2+1]dx=12x2+1×d[x2+1]dx d[x2+1]dx=12x2+1×(d[x2]dx+d[1]dx) \begin{aligned} & \Rightarrow \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\times \dfrac{d\left[ {{x}^{2}}+1 \right]}{dx} \\\ & \Rightarrow \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\times \left( \dfrac{d\left[ {{x}^{2}} \right]}{dx}+\dfrac{d\left[ 1 \right]}{dx} \right) \\\ \end{aligned}
Using the formula d[xn]dx=nxn1\dfrac{d\left[ {{x}^{n}} \right]}{dx}=n{{x}^{n-1}} and the fact that the derivative of a constant is 0 we get,
d[x2+1]dx=12x2+1×(2x21+0) d[x2+1]dx=12x2+1×(2x) d[x2+1]dx=xx2+1 \begin{aligned} & \Rightarrow \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\times \left( 2{{x}^{2-1}}+0 \right) \\\ & \Rightarrow \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\times \left( 2x \right) \\\ & \therefore \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{x}{\sqrt{{{x}^{2}}+1}} \\\ \end{aligned}
Hence, the above relation is our answer.

Note: You must remember all the basic rules and formulas of differentiation like: - product rule, chain rule, uv\dfrac{u}{v} rule etc. You can also convert the given function into parametric form then differentiate. Assume the function as y and substitute x=tanθx=\tan \theta and then you will get the function y=secθy=\sec \theta . Now, find the derivative by using the formula dydx=(dydθ)(dxdθ)\dfrac{dy}{dx}=\dfrac{\left( \dfrac{dy}{d\theta } \right)}{\left( \dfrac{dx}{d\theta } \right)}. Use the formulas d(secθ)dx=secθtanθ\dfrac{d\left( \sec \theta \right)}{dx}=\sec \theta \tan \theta and d(tanθ)dx=sec2θ\dfrac{d\left( \tan \theta \right)}{dx}={{\sec }^{2}}\theta to simplify and get the answer. Finally substitute the value of these trigonometric functions in terms of x to get the answer.