Solveeit Logo

Question

Question: What is the derivative of \(-\sin \left( x \right)\) ?...

What is the derivative of sin(x)-\sin \left( x \right) ?

Explanation

Solution

To find the derivative of sin(x)-\sin \left( x \right) , we have to find the derivative of sinx\sin x and then multiply it with -1. We will first equate f(x)=sinxf\left( x \right)=\sin x and find the derivative using the formula f(x)=limh0f(x+h)f(x)hf'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} . We will use sinasinb=2sin12(ab)cos12(a+b)\sin a-\sin b=2\sin \dfrac{1}{2}\left( a-b \right)\cos \dfrac{1}{2}\left( a+b \right) and limx0sinxx=1\displaystyle \lim_{x\to 0}\dfrac{\sin x}{x}=1 and simplify further. Then, we will use the properties of limits and apply the limits. Finally, we will multiply the derivative with -1.

Complete step by step solution:
We have to find the derivative of sin(x)-\sin \left( x \right) . Let us first find the derivative of sinx\sin x and then multiply it with -1.
We know that derivative of a function f(x)f\left( x \right) is given by
f(x)=limh0f(x+h)f(x)hf'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}
Let us consider f(x)=sinxf\left( x \right)=\sin x . Then the above formula becomes
f(x)=limh0sin(x+h)sinxh\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sin \left( x+h \right)-\sin x}{h}
We know that sinasinb=2sin12(ab)cos12(a+b)\sin a-\sin b=2\sin \dfrac{1}{2}\left( a-b \right)\cos \dfrac{1}{2}\left( a+b \right) . Let us use this formula in the above equation.
f(x)=limh02sin12(x+hx)cos12(x+h+x)h\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \dfrac{1}{2}\left( x+h-x \right)\cos \dfrac{1}{2}\left( x+h+x \right)}{h}
We can simplify the above equation to
f(x)=limh02sin(h2)cos(2x+h2)h\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2x+h}{2} \right)}{h}
We can rewrite the angle of cos in the above expression as
f(x)=limh02sin(h2)cos(2x2+h2)h f(x)=limh02sin(h2)cos(x+h2)h \begin{aligned} & \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2x}{2}+\dfrac{h}{2} \right)}{h} \\\ & \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( x+\dfrac{h}{2} \right)}{h} \\\ \end{aligned}
We know that limxaf(x)g(x)=limxaf(x)limxag(x)\displaystyle \lim_{x\to a}f\left( x \right)\cdot g\left( x \right)=\displaystyle \lim_{x\to a}f\left( x \right)\cdot \displaystyle \lim_{x\to a}g\left( x \right) . Hence, we can write the above equation as
f(x)=limh02sin(h2)hlimh0cos(x+h2)\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)}{h}\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right)
We can rewrite the above equation as
f(x)=limh0sin(h2)h2limh0cos(x+h2)\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right)
We know that limx0sinxx=1\displaystyle \lim_{x\to 0}\dfrac{\sin x}{x}=1 . Hence, the above equation becomes
f(x)=1limh0cos(x+h2) f(x)=limh0cos(x+h2) \begin{aligned} & \Rightarrow f'\left( x \right)=1\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right) \\\ & \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right) \\\ \end{aligned}
Let us apply the limit.
f(x)=cos(x+0) f(x)=cosx \begin{aligned} & \Rightarrow f'\left( x \right)=\cos \left( x+0 \right) \\\ & \Rightarrow f'\left( x \right)=\cos x \\\ \end{aligned}
Now, let us multiply -1 with f(x)f\left( x \right) .
f(x)×1=sinx f(x)=sinx \begin{aligned} & \Rightarrow f\left( x \right)\times -1=\sin x \\\ & \Rightarrow f\left( x \right)=-\sin x \\\ \end{aligned}
We can write the derivative as
f(x)×1=cosx f(x)=cosx \begin{aligned} & \Rightarrow f'\left( x \right)\times -1=\cos x \\\ & \Rightarrow f'\left( x \right)=-\cos x \\\ \end{aligned}

Hence, the derivative of sin(x)-\sin \left( x \right) is cosx-\cos x

Note: Students must know the trigonometric properties and formulas to solve this problem. They must also know the formula of derivatives, the properties of limits and how to apply them. Students must be careful with the formula sinasinb=2sin12(ab)cos12(a+b)\sin a-\sin b=2\sin \dfrac{1}{2}\left( a-b \right)\cos \dfrac{1}{2}\left( a+b \right) . The cos part has a+ba+b not aba-b . We can also find the derivative of sin(x)-\sin \left( x \right) in an alternate way.
We know that derivative of sinx\sin x , that is ddxsinx=cosx\dfrac{d}{dx}\sin x=\cos x .
Now, we will multiply -1 on both the sides in the above formula.
1×ddxsinx=(cosx)×1 ddx(sinx)=cosx \begin{aligned} & -1\times \dfrac{d}{dx}\sin x=\left( \cos x \right)\times -1 \\\ & \Rightarrow \dfrac{d}{dx}\left( -\sin x \right)=-\cos x \\\ \end{aligned}