Solveeit Logo

Question

Question: What is the derivative of \[\sin \left( {\cos x} \right)\]?...

What is the derivative of sin(cosx)\sin \left( {\cos x} \right)?

Explanation

Solution

sin(cosx)\sin \left( {\cos x} \right) is a composite function. We will use the concept of chain rule of differentiation to find the derivative of the given composite function. From the chain rule of differentiation, we know that ddx[f(g(x))]=f1(g(x))g1(x)\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = {f^1}\left( {g\left( x \right)} \right){g^1}\left( x \right). Here, g(x)g\left( x \right) is cosx\cos x and f(g(x))f\left( {g\left( x \right)} \right) is sin(cosx)\sin \left( {\cos x} \right).Using this we will find the derivative of sin(cosx)\sin \left( {\cos x} \right).

Complete step by step answer:
Given is a sine function in the form of sin(cosx)\sin \left( {\cos x} \right).To find the derivative of sin(cosx)\sin \left( {\cos x} \right), we will use the concept of chain rule of differentiation.From the chain rule of differentiation, we know that,
ddx[f(g(x))]=f1(g(x))g1(x)\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = {f^1}\left( {g\left( x \right)} \right){g^1}\left( x \right).

As we know, the differentiation of sinx\sin x is cosx\cos x.
Therefore, on differentiation of the first term of sin(cosx)\sin \left( {\cos x} \right), we get cos(cosx)\cos \left( {\cos x} \right).
Let us assume cos(cosx)=A\cos \left( {\cos x} \right) = A. Now, as we know, the differentiation of cosx\cos x is (sinx)\left( { - \sin x} \right).
On differentiating the second function, we get
ddx(cosx)=sinx\Rightarrow \dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x
Therefore, we get differentiation of the second function as (sinx)\left( { - \sin x} \right).

Let us assume (sinx)=B\left( { - \sin x} \right) = B. We know that we have to multiply the result of both the differentiation to get the result i.e.,
ddx(sin(cosx))=A×B\Rightarrow \dfrac{d}{{dx}}\left( {\sin \left( {\cos x} \right)} \right) = A \times B
Substituting the values of AA and BB, we get
ddx(sin(cosx))=cos(cosx)×(sinx)\Rightarrow \dfrac{d}{{dx}}\left( {\sin \left( {\cos x} \right)} \right) = \cos \left( {\cos x} \right) \times \left( { - \sin x} \right)
On rewriting we get,
ddx(sin(cosx))=sinxcos(cosx)\Rightarrow \dfrac{d}{{dx}}\left( {\sin \left( {\cos x} \right)} \right) = - \sin x\cos \left( {\cos x} \right)

Therefore, the derivative of sin(cosx)\sin \left( {\cos x} \right) is sinxcos(cosx) - \sin x\cos \left( {\cos x} \right).

Note: We can also solve this problem by taking sin(cosx)\sin \left( {\cos x} \right) as yy and then applying sin1{\sin ^{ - 1}} on both the sides and then differentiating to find differentiation of yy with respect to xx i.e., dydx\dfrac{{dy}}{{dx}}.
Let y=sin(cosx)y = \sin \left( {\cos x} \right).
Taking sin1{\sin ^{ - 1}} on both the sides, we get
sin1y=cosx\Rightarrow {\sin ^{ - 1}}y = \cos x

On differentiating both the side with respect to xx, we get
ddx(sin1y)=ddx(cosx)(1)\Rightarrow \dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}y} \right) = \dfrac{d}{{dx}}\left( {\cos x} \right) - - - (1)
As we know that ddx(sin1x)=11x2\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}.
So, differentiation of sin1y{\sin ^{ - 1}}y with respect to xx is given by,
ddx(sin1y)=11y2dydx\Rightarrow \dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}y} \right) = \dfrac{1}{{\sqrt {1 - {y^2}} }}\dfrac{{dy}}{{dx}}
Also, ddx(cosx)=sinx\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x.

Putting these values in (1)(1), we get
11y2dydx=sinx\Rightarrow \dfrac{1}{{\sqrt {1 - {y^2}} }}\dfrac{{dy}}{{dx}} = - \sin x
Putting the value of yy, we get
11sin2(cosx)dydx=sinx\Rightarrow \dfrac{1}{{\sqrt {1 - {{\sin }^2}\left( {\cos x} \right)} }}\dfrac{{dy}}{{dx}} = - \sin x
As sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1, using this we get
1cos2(cosx)dydx=sinx\Rightarrow \dfrac{1}{{\sqrt {{{\cos }^2}\left( {\cos x} \right)} }}\dfrac{{dy}}{{dx}} = - \sin x

On simplification,
1cos(cosx)dydx=sinx\Rightarrow \dfrac{1}{{\cos \left( {\cos x} \right)}}\dfrac{{dy}}{{dx}} = - \sin x
On rearranging, we get
dydx=sinxcos(cosx)\Rightarrow \dfrac{{dy}}{{dx}} = - \sin x\cos \left( {\cos x} \right)
Therefore, the derivative of sin(cosx)\sin \left( {\cos x} \right) is sinxcos(cosx) - \sin x\cos \left( {\cos x} \right).