Solveeit Logo

Question

Question: What is the derivative of \( {{\log }_{4}}{{x}^{2}} \) ?...

What is the derivative of log4x2{{\log }_{4}}{{x}^{2}} ?

Explanation

Solution

Hint : First we find the simplified form of log4x2{{\log }_{4}}{{x}^{2}} using the formulas like logxa=alogx\log {{x}^{a}}=a\log x , logbx=logcxlogcb{{\log }_{b}}x=\dfrac{{{\log }_{c}}x}{{{\log }_{c}}b} . Then we find the derivative of lnxln2\dfrac{\ln x}{\ln 2} using ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} . We find the final solution.

Complete step by step solution:
We first simplify the logarithm of log4x2{{\log }_{4}}{{x}^{2}} . We apply the formula of logbx=logcxlogcb{{\log }_{b}}x=\dfrac{{{\log }_{c}}x}{{{\log }_{c}}b} .
For our given log4x2{{\log }_{4}}{{x}^{2}} , we assume c=ec=e . We also know that lna=logea\ln a={{\log }_{e}}a .
Therefore, log4x2=logex2loge4=logex2loge22{{\log }_{4}}{{x}^{2}}=\dfrac{{{\log }_{e}}{{x}^{2}}}{{{\log }_{e}}4}=\dfrac{{{\log }_{e}}{{x}^{2}}}{{{\log }_{e}}{{2}^{2}}}
We have the properties where logxa=alogx\log {{x}^{a}}=a\log x . We apply that on both numerator and denominator.
log4x2=logex2loge22=2logex2loge2=logexloge2{{\log }_{4}}{{x}^{2}}=\dfrac{{{\log }_{e}}{{x}^{2}}}{{{\log }_{e}}{{2}^{2}}}=\dfrac{2{{\log }_{e}}x}{2{{\log }_{e}}2}=\dfrac{{{\log }_{e}}x}{{{\log }_{e}}2}
We now use the form of lna=logea\ln a={{\log }_{e}}a and get log4x2=logexloge2=lnxln2{{\log }_{4}}{{x}^{2}}=\dfrac{{{\log }_{e}}x}{{{\log }_{e}}2}=\dfrac{\ln x}{\ln 2} .
The value of ln2\ln 2 is a constant.
Now we find the derivative of log4x2{{\log }_{4}}{{x}^{2}} being equal to lnxln2\dfrac{\ln x}{\ln 2} .
We know that the derivative form for lnx\ln x is ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} .
Therefore, we get ddx(lnxln2)=1ln2ddx(lnx)=1xln2\dfrac{d}{dx}\left( \dfrac{\ln x}{\ln 2} \right)=\dfrac{1}{\ln 2}\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x\ln 2} .
Therefore, the derivative of log4x2{{\log }_{4}}{{x}^{2}} is 1xln2\dfrac{1}{x\ln 2} .
So, the correct answer is “ 1xln2\dfrac{1}{x\ln 2} ”.

Note : There are some particular rules that we follow in case of finding the condensed form of logarithm. We first apply the power property first. The chain rule may be extended or generalized to many other situations, including to products of multiple functions, to a rule for higher-order derivatives of a product, and to other contexts.