Solveeit Logo

Question

Question: What is the derivative of \(\ln \left( {{\tan }^{2}}x \right)\)?...

What is the derivative of ln(tan2x)\ln \left( {{\tan }^{2}}x \right)?

Explanation

Solution

In this method we need to find the derivative of the given function. For this we are going to use the substitution method and use the substitution u=tan2xu={{\tan }^{2}}x. First, we will differentiate the substitution u=tan2xu={{\tan }^{2}}x with respect to xx by using the differentiation formulas ddx(f(g(x)))=f(g(x))×g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right), ddx(x2)=2x\dfrac{d}{dx}\left( {{x}^{2}} \right)=2x, ddx(tanx)=sec2x\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x. After using all the above formulas, we will get the value of dudx\dfrac{du}{dx}. Now we will consider the given function and use the assumed substitution value and differentiate the equation. Here we will use the calculated value of dudx\dfrac{du}{dx} and differentiation formula ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} and simplify the equation to get the required result.

Complete step by step solution:
Given function is ln(tan2x)\ln \left( {{\tan }^{2}}x \right).
Let us assume the substitution u=tan2xu={{\tan }^{2}}x. Substituting this value in the given function, then we will get
ln(tan2x)=ln(u).....(i)\ln \left( {{\tan }^{2}}x \right)=\ln \left( u \right).....\left( \text{i} \right)
Considering the substitution u=tan2xu={{\tan }^{2}}x and differentiating the equation with respect to xx, then we will have
dudx=ddx(tan2x)\dfrac{du}{dx}=\dfrac{d}{dx}\left( {{\tan }^{2}}x \right)
We have the differentiation formulas ddx(f(g(x)))=f(g(x))×g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right), ddx(x2)=2x\dfrac{d}{dx}\left( {{x}^{2}} \right)=2x, ddx(tanx)=sec2x\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x. Applying all the above formulas and simplifying the equation, then we will get
dudx=2tanx×ddx(tanx) dudx=2tanxsec2x \begin{aligned} & \dfrac{du}{dx}=2\tan x\times \dfrac{d}{dx}\left( \tan x \right) \\\ & \Rightarrow \dfrac{du}{dx}=2\tan x{{\sec }^{2}}x \\\ \end{aligned}
Now considering the equation (i)\left( \text{i} \right) and differentiating the equation with respect to xx, then we will have
ddx(ln(tan2x))=ddx(lnu)\dfrac{d}{dx}\left( \ln \left( {{\tan }^{2}}x \right) \right)=\dfrac{d}{dx}\left( \ln u \right)
Applying the differentiation formulas ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}, ddx(f(g(x)))=f(g(x))×g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right) in the above equation, then we will get
ddx(ln(tan2x))=1u×dudx\dfrac{d}{dx}\left( \ln \left( {{\tan }^{2}}x \right) \right)=\dfrac{1}{u}\times \dfrac{du}{dx}
Substituting the values dudx=2tanxsec2x\dfrac{du}{dx}=2\tan x{{\sec }^{2}}x, u=tan2xu={{\tan }^{2}}x in the above equation, then we will have
ddx(ln(tan2x))=1tan2x×2tanxsec2x\dfrac{d}{dx}\left( \ln \left( {{\tan }^{2}}x \right) \right)=\dfrac{1}{{{\tan }^{2}}x}\times 2\tan x{{\sec }^{2}}x
Cancelling the term tanx\tan x which is in both numerator and denominator, then we will get
ddx(ln(tan2x))=2sec2xtanx\dfrac{d}{dx}\left( \ln \left( {{\tan }^{2}}x \right) \right)=\dfrac{2{{\sec }^{2}}x}{\tan x}

Hence the derivative of the given function ln(tan2x)\ln \left( {{\tan }^{2}}x \right) is 2sec2xtanx\dfrac{2{{\sec }^{2}}x}{\tan x}.

Note: We can also simplify the above result by using the trigonometric identity sec2xtan2x=1{{\sec }^{2}}x-{{\tan }^{2}}x=1. From this identity we can write sec2x=1+tan2x{{\sec }^{2}}x=1+{{\tan }^{2}}x, substituting this value in the obtained result then we will get
ddx(ln(tan2x))=2(tan2x+1)tanx\dfrac{d}{dx}\left( \ln \left( {{\tan }^{2}}x \right) \right)=2\dfrac{\left( {{\tan }^{2}}x+1 \right)}{\tan x}
Simplifying the above equation by using some basic mathematical operations and the value cotx=1tanx\cot x=\dfrac{1}{\tan x}, then we will have
ddx(ln(tan2x))=2[tan2xtanx+1tanx] ddx(ln(tan2x))=2(tanx+cotx) \begin{aligned} & \dfrac{d}{dx}\left( \ln \left( {{\tan }^{2}}x \right) \right)=2\left[ \dfrac{{{\tan }^{2}}x}{\tan x}+\dfrac{1}{\tan x} \right] \\\ & \Rightarrow \dfrac{d}{dx}\left( \ln \left( {{\tan }^{2}}x \right) \right)=2\left( \tan x+\cot x \right) \\\ \end{aligned}
So, we can also write the derivative of the given equation ln(tan2x)\ln \left( {{\tan }^{2}}x \right) as 2(tanx+cotx)2\left( \tan x+\cot x \right)