Solveeit Logo

Question

Question: What is the derivative of \(\ln \left( 6x \right)\)?...

What is the derivative of ln(6x)\ln \left( 6x \right)?

Explanation

Solution

In this problem we need to calculate the derivative of the given function. In the given value we have logarithmic function. The value in the logarithmic function is 6x6x which is the product of the two variables 66 and xx. So, we will apply the logarithmic formula ln(ab)=lna+lnb\ln \left( ab \right)=\ln a+\ln b. By applying this formula, we can write the given value as the sum of two values which are ln6\ln 6 and lnx\ln x. Now we will differentiate the obtained equation with respect to variable xx. Here we will use the differentiation formula ddx(a+b)=ddx(a)+ddx(b)\dfrac{d}{dx}\left( a+b \right)=\dfrac{d}{dx}\left( a \right)+\dfrac{d}{dx}\left( b \right). After applying this formula, we will simplify the obtained equation by using the differentiation values ddx(constant)=0\dfrac{d}{dx}\left( \text{constant} \right)=0, ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}.

Complete step-by-step solution:
Given value is ln(6x)\ln \left( 6x \right).
In the above value we can observe the product of the variables 66 and xx are written in logarithmic function. By applying the logarithmic formula ln(ab)=lna+lnb\ln \left( ab \right)=\ln a+\ln b we can write the given value as
ln(6x)=ln6+lnx\ln \left( 6x \right)=\ln 6+\ln x
We know that the value of ln6\ln 6 is 1.791.79. Substituting this value in the above equation, then we will get
ln(6x)=1.79+lnx\ln \left( 6x \right)=1.79+\ln x
Differentiating the above equation with respect to the variable xx, then we will have
ddx(ln(6x))=ddx(1.79+lnx)\dfrac{d}{dx}\left( \ln \left( 6x \right) \right)=\dfrac{d}{dx}\left( 1.79+\ln x \right)
Applying the differentiation formula ddx(a+b)=ddx(a)+ddx(b)\dfrac{d}{dx}\left( a+b \right)=\dfrac{d}{dx}\left( a \right)+\dfrac{d}{dx}\left( b \right) in the above equation, then the above equation is modified as
ddx(ln(6x))=ddx(1.79)+ddx(lnx)\dfrac{d}{dx}\left( \ln \left( 6x \right) \right)=\dfrac{d}{dx}\left( 1.79 \right)+\dfrac{d}{dx}\left( \ln x \right)
We know that the value 1.791.79 is a constant. So, applying the differentiation formulas ddx(constant)=0\dfrac{d}{dx}\left( \text{constant} \right)=0, ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} in the above equation, then we will get
ddx(ln(6x))=0+1x ddx(ln(6x))=1x \begin{aligned} & \dfrac{d}{dx}\left( \ln \left( 6x \right) \right)=0+\dfrac{1}{x} \\\ & \therefore \dfrac{d}{dx}\left( \ln \left( 6x \right) \right)=\dfrac{1}{x} \\\ \end{aligned}
Hence the derivative of the value ln(6x)\ln \left( 6x \right) is 1x\dfrac{1}{x}.

Note: We can also directly solve this problem by using the differentiation formulas ddx(f(g(x)))=f(g(x))×g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right), ddx(ln(ax))=1ax\dfrac{d}{dx}\left( \ln \left( ax \right) \right)=\dfrac{1}{ax}, ddx(ax)=a\dfrac{d}{dx}\left( ax \right)=a. Applying all these formulas to find the derivative of the given value ln(6x)\ln \left( 6x \right), then we will get
ddx(ln(6x))=ddx(ln(6x))×ddx(6x) ddx(ln(6x))=16x×6 ddx(ln(6x))=1x \begin{aligned} & \dfrac{d}{dx}\left( \ln \left( 6x \right) \right)=\dfrac{d}{dx}\left( \ln \left( 6x \right) \right)\times \dfrac{d}{dx}\left( 6x \right) \\\ & \Rightarrow \dfrac{d}{dx}\left( \ln \left( 6x \right) \right)=\dfrac{1}{6x}\times 6 \\\ & \Rightarrow \dfrac{d}{dx}\left( \ln \left( 6x \right) \right)=\dfrac{1}{x} \\\ \end{aligned}
From both the methods we got the same result.