Solveeit Logo

Question

Question: What is the derivative of \({\left( {\dfrac{1}{{\sin x}}} \right)^2}\)?...

What is the derivative of (1sinx)2{\left( {\dfrac{1}{{\sin x}}} \right)^2}?

Explanation

Solution

We have to find the derivative of (1sinx)2{\left( {\dfrac{1}{{\sin x}}} \right)^2}. We know that, inverse of sine is cosine. Hence, we can write (1sinx)\left( {\dfrac{1}{{\sin x}}} \right) as cosecx\cos ecx. So, now we have to differentiate (cosecx)2{\left( {\cos ecx} \right)^2}. To find the derivative of (cosecx)2{\left( {\cos ecx} \right)^2}, we will be using the chain rule, which is ddx[f(g(x))]=f(g(x))g(x)\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right)g'\left( x \right)

Complete step-by-step solution:
In this question, we have to find the derivative of (1sinx)2{\left( {\dfrac{1}{{\sin x}}} \right)^2}.
Let the derivative of (1sinx)2{\left( {\dfrac{1}{{\sin x}}} \right)^2} be equal to x.
Therefore,
x=ddx(1sinx)2x = \dfrac{d}{{dx}}{\left( {\dfrac{1}{{\sin x}}} \right)^2}- - - - - - - - - (1)
Now, the above expression may look a little complicated, but it is quite simple.
Now, we know that 1 divided by sinx\sin x is equal to cosecx\cos ecx, as the inverse of sinx\sin x is cosecx\cos ecx.
1sinx=cosecx\Rightarrow \dfrac{1}{{\sin x}} = \cos ecx.
Putting this value in equation (1), we get
x=ddx(cosecx)2\Rightarrow x = \dfrac{d}{{dx}}{\left( {\cos ecx} \right)^2}- - - - - - - - (2)
Now, to differentiate the above equation, we need to use the chain rule.
According to chain rule,
ddx[f(g(x))]=f(g(x))g(x)\Rightarrow \dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right)g'\left( x \right)
Therefore, we have to differentiate cosecx\cos ecx and power 2 as well.
Now, the derivative of cosecx\cos ecx is cosecxcotx - \cos ecx \cdot \cot x and the derivative of cosec2x\cos e{c^2}x is 2cosecx2\cos ecx.
ddx(cosecx)=2cosecxcotx\Rightarrow \dfrac{d}{{dx}}\left( {\cos ecx} \right) = - 2\cos ecx \cdot \cot x
Therefore, equation (2) becomes,
x=2cosecxcotx.cosecx x=2cosec2xcotx  \Rightarrow x = - 2\cos ecx \cdot \cot x.\cos ecx \\\ \Rightarrow x = - 2\cos e{c^2}x \cdot \cot x \\\
Hence, the derivative of (1sinx)2{\left( {\dfrac{1}{{\sin x}}} \right)^2} is 2cosecx2cotx - 2\cos ec{x^2} \cdot \cot x.

Note: We can also solve this question using a division method.
x=1sin2x\Rightarrow x = \dfrac{1}{{{{\sin }^2}x}}
Now, the division rule is
ddx[f(x)g(x)]=g(x)f(x)f(x)g(x)[g(x)]2\Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \dfrac{{g\left( x \right) \cdot f'\left( x \right) - f\left( x \right) \cdot g'\left( x \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}
Here, f(x)=1f\left( x \right) = 1 and g(x)=sin2xg\left( x \right) = {\sin ^2}x. Therefore putting these values in above equation, we get
ddx(1sin2x)=sin2xddx11ddxsin2x(sin2x)2 ddx(1sin2x)=02sinxcosxsin4x=2cosxsin3x  \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{1}{{{{\sin }^2}x}}} \right) = \dfrac{{{{\sin }^2}x\dfrac{d}{{dx}}1 - 1\dfrac{d}{{dx}}{{\sin }^2}x}}{{{{\left( {{{\sin }^2}x} \right)}^2}}} \\\ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{1}{{{{\sin }^2}x}}} \right) = \dfrac{{0 - 2\sin x\cos x}}{{{{\sin }^4}x}} = \dfrac{{ - 2\cos x}}{{{{\sin }^3}x}} \\\
Now, we know that cosxsinx=cotx\dfrac{{\cos x}}{{\sin x}} = \cot x and 1sinx=cosecx\dfrac{1}{{\sin x}} = \cos ecx.
Therefore, the above equation becomes,
ddx(1sin2x)=2cosxsin2xsinx=2cotxcosec2x\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{1}{{{{\sin }^2}x}}} \right) = \dfrac{{ - 2\cos x}}{{{{\sin }^2}x \cdot \sin x}} = - 2\cot x \cdot \cos e{c^2}x