Solveeit Logo

Question

Question: What is the derivative of \(\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}\) ?...

What is the derivative of sinx+cosxsinxcosx\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}} ?

Explanation

Solution

In the given problem, we are required to differentiate sinx+cosxsinxcosx\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}} with respect to x. Since, sinx+cosxsinxcosx\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}} is a rational trigonometric function in variable x, so we will have to apply quotient rule of differentiation in the process of differentiating sinx+cosxsinxcosx\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}.Also derivatives of basic algebraic and trigonometric functions must be remembered thoroughly.

Complete step by step answer:
Let us assume the function to be f(x)f(x). Then, we have,
f(x)=sinx+cosxsinxcosxf(x) = \dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}
Differentiating both sides with respect to x,
ddxf(x)=ddx[sinx+cosxsinxcosx]\Rightarrow \dfrac{d}{{dx}}f(x) = \dfrac{d}{{dx}}\left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right]

Now, using the quotient rule of differentiation, we know that ddx(f(x)g(x))=g(x)×ddx(f(x))f(x)×ddx(g(x))[g(x)]2\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}} .
So, Applying quotient rule to ddx(sinx+cosxsinxcosx)\dfrac{d}{{dx}}\left( {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right), we get,
dydx=(sinxcosx)ddx(sinx+cosx)(sinx+cosx)ddx(sinxcosx)(sinxcosx)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {\sin x - \cos x} \right)\dfrac{d}{{dx}}\left( {\sin x + \cos x} \right) - \left( {\sin x + \cos x} \right)\dfrac{d}{{dx}}\left( {\sin x - \cos x} \right)}}{{{{\left( {\sin x - \cos x} \right)}^2}}}
Now, separating the derivatives of the functions, we get,
dydx=(sinxcosx)[ddx(sinx)+ddx(cosx)](sinx+cosx)[ddx(sinx)ddx(cosx)](sinxcosx)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {\sin x - \cos x} \right)\left[ {\dfrac{d}{{dx}}\left( {\sin x} \right) + \dfrac{d}{{dx}}\left( {\cos x} \right)} \right] - \left( {\sin x + \cos x} \right)\left[ {\dfrac{d}{{dx}}\left( {\sin x} \right) - \dfrac{d}{{dx}}\left( {\cos x} \right)} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}

Now, we know that the derivative of sinx\sin xwith respect to x is cosx\cos x and cosx\cos x with respect to x is sinx - \sin x. Substituting these derivatives, we get,
dydx=(sinxcosx)[cosx+(sinx)](sinx+cosx)[cosx(sinx)](sinxcosx)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {\sin x - \cos x} \right)\left[ {\cos x + \left( { - \sin x} \right)} \right] - \left( {\sin x + \cos x} \right)\left[ {\cos x - \left( { - \sin x} \right)} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}
Simplifying the expression, we get,
dydx=(sinxcosx)[cosxsinx](sinx+cosx)[cosx+sinx](sinxcosx)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {\sin x - \cos x} \right)\left[ {\cos x - \sin x} \right] - \left( {\sin x + \cos x} \right)\left[ {\cos x + \sin x} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}
dydx=(sinxcosx)2(sinx+cosx)2(sinxcosx)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - {{\left( {\sin x - \cos x} \right)}^2} - {{\left( {\sin x + \cos x} \right)}^2}}}{{{{\left( {\sin x - \cos x} \right)}^2}}}

Now, using the algebraic identities (ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2} and (a+b)2=a2+2ab+b2{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}, we get,
dydx=[sin2x2sinxcosx+cos2x][sin2x+2sinxcosx+cos2x](sinxcosx)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left[ {{{\sin }^2}x - 2\sin x\cos x + {{\cos }^2}x} \right] - \left[ {{{\sin }^2}x + 2\sin x\cos x + {{\cos }^2}x} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}
Using the trigonometric identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1,
dydx=[12sinxcosx][1+2sinxcosx](sinxcosx)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left[ {1 - 2\sin x\cos x} \right] - \left[ {1 + 2\sin x\cos x} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}
Opening the brackets and simplifying the expression,
dydx=1+2sinxcosx12sinxcosx(sinxcosx)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 1 + 2\sin x\cos x - 1 - 2\sin x\cos x}}{{{{\left( {\sin x - \cos x} \right)}^2}}}
Cancelling the like terms with opposite signs, we get,
dydx=2(sinxcosx)2\therefore \dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}}

Hence, the derivative of sinx+cosxsinxcosx\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}} with respect to x is 2(sinxcosx)2\dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}}.

Note: We can also further simplify the derivative expression as follows:
2(sinxcosx)2=2sin2x2sinxcosx+cos2x\Rightarrow \dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}} = \dfrac{{ - 2}}{{{{\sin }^2}x - 2\sin x\cos x + {{\cos }^2}x}}
The whole square term is expanded using the algebraic identity (ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2},
2(sinxcosx)2=212sinxcosx\Rightarrow \dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}} = \dfrac{{ - 2}}{{1 - 2\sin x\cos x}}
Now, we use the trigonometric identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1. We also know the double angle formula for sine as sin2x=2sinxcosx\sin 2x = 2\sin x\cos x. So, we get,
2(sinxcosx)2=21sin2x=2sin2x1\therefore \dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}} = \dfrac{{ - 2}}{{1 - \sin 2x}} = \dfrac{2}{{\sin 2x - 1}}
The simplified form for the derivative of the given expression is 2sin2x1\dfrac{2}{{\sin 2x - 1}}.