Question
Question: What is the derivative of \(\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}\) ?...
What is the derivative of sinx−cosxsinx+cosx ?
Solution
In the given problem, we are required to differentiate sinx−cosxsinx+cosx with respect to x. Since, sinx−cosxsinx+cosx is a rational trigonometric function in variable x, so we will have to apply quotient rule of differentiation in the process of differentiating sinx−cosxsinx+cosx.Also derivatives of basic algebraic and trigonometric functions must be remembered thoroughly.
Complete step by step answer:
Let us assume the function to be f(x). Then, we have,
f(x)=sinx−cosxsinx+cosx
Differentiating both sides with respect to x,
⇒dxdf(x)=dxd[sinx−cosxsinx+cosx]
Now, using the quotient rule of differentiation, we know that dxd(g(x)f(x))=[g(x)]2g(x)×dxd(f(x))−f(x)×dxd(g(x)) .
So, Applying quotient rule to dxd(sinx−cosxsinx+cosx), we get,
⇒dxdy=(sinx−cosx)2(sinx−cosx)dxd(sinx+cosx)−(sinx+cosx)dxd(sinx−cosx)
Now, separating the derivatives of the functions, we get,
⇒dxdy=(sinx−cosx)2(sinx−cosx)[dxd(sinx)+dxd(cosx)]−(sinx+cosx)[dxd(sinx)−dxd(cosx)]
Now, we know that the derivative of sinxwith respect to x is cosx and cosx with respect to x is −sinx. Substituting these derivatives, we get,
⇒dxdy=(sinx−cosx)2(sinx−cosx)[cosx+(−sinx)]−(sinx+cosx)[cosx−(−sinx)]
Simplifying the expression, we get,
⇒dxdy=(sinx−cosx)2(sinx−cosx)[cosx−sinx]−(sinx+cosx)[cosx+sinx]
⇒dxdy=(sinx−cosx)2−(sinx−cosx)2−(sinx+cosx)2
Now, using the algebraic identities (a−b)2=a2−2ab+b2 and (a+b)2=a2+2ab+b2, we get,
⇒dxdy=(sinx−cosx)2−[sin2x−2sinxcosx+cos2x]−[sin2x+2sinxcosx+cos2x]
Using the trigonometric identity sin2x+cos2x=1,
⇒dxdy=(sinx−cosx)2−[1−2sinxcosx]−[1+2sinxcosx]
Opening the brackets and simplifying the expression,
⇒dxdy=(sinx−cosx)2−1+2sinxcosx−1−2sinxcosx
Cancelling the like terms with opposite signs, we get,
∴dxdy=(sinx−cosx)2−2
Hence, the derivative of sinx−cosxsinx+cosx with respect to x is (sinx−cosx)2−2.
Note: We can also further simplify the derivative expression as follows:
⇒(sinx−cosx)2−2=sin2x−2sinxcosx+cos2x−2
The whole square term is expanded using the algebraic identity (a−b)2=a2−2ab+b2,
⇒(sinx−cosx)2−2=1−2sinxcosx−2
Now, we use the trigonometric identity sin2x+cos2x=1. We also know the double angle formula for sine as sin2x=2sinxcosx. So, we get,
∴(sinx−cosx)2−2=1−sin2x−2=sin2x−12
The simplified form for the derivative of the given expression is sin2x−12.