Solveeit Logo

Question

Question: What is the derivative of \(\dfrac{1}{x\ln x}\) ?...

What is the derivative of 1xlnx\dfrac{1}{x\ln x} ?

Explanation

Solution

We can find the derivative of the given function by using the product rule and quotient rule of differentiation. First, we use quotient rule which states that,
d(f(x)g(x))dx=g(x)d(f(x))dxf(x)d(g(x))dx(g(x))2\dfrac{d\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)}{dx}=\dfrac{g\left( x \right)\dfrac{d\left( f\left( x \right) \right)}{dx}-f\left( x \right)\dfrac{d\left( g\left( x \right) \right)}{dx}}{{{\left( g\left( x \right) \right)}^{2}}}
And then finally we can use the product rule to find the solution.
d(f(x)g(x))dx=f(x)d(g(x))dx+g(x)d(f(x))dx\dfrac{d\left( f\left( x \right)g\left( x \right) \right)}{dx}=f\left( x \right)\dfrac{d\left( g\left( x \right) \right)}{dx}+g\left( x \right)\dfrac{d\left( f\left( x \right) \right)}{dx}

Complete step by step solution:
In the question we are given the function, 1xlnx\dfrac{1}{x\ln x} . We have been asked to find its derivative, that is, we need to find, d(1xlnx)dx\dfrac{d\left( \dfrac{1}{x\ln x} \right)}{dx} . First, we can use the quotient rule of differentiation to find the derivative of the given function. The quotient rule states that, for two function f and g, (g(x)0)\left( g\left( x \right)\ne 0 \right)
d(f(x)g(x))dx=g(x)d(f(x))dxf(x)d(g(x))dx(g(x))2\dfrac{d\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)}{dx}=\dfrac{g\left( x \right)\dfrac{d\left( f\left( x \right) \right)}{dx}-f\left( x \right)\dfrac{d\left( g\left( x \right) \right)}{dx}}{{{\left( g\left( x \right) \right)}^{2}}}
We can clearly see that in our case, f(x)f\left( x \right) is 1 and g(x)g\left( x \right) is xlnxx\ln x . Therefore, by applying the rule, we get,
d(1xlnx)dx=xlnxd(1)dx1d(xlnx)dx(xlnx)2\dfrac{d\left( \dfrac{1}{x\ln x} \right)}{dx}=\dfrac{x\ln x\dfrac{d\left( 1 \right)}{dx}-1\dfrac{d\left( x\ln x \right)}{dx}}{{{\left( x\ln x \right)}^{2}}}
We know that the derivative of a constant is 0, hence, we end up with,
d(1xlnx)dx=d(xlnx)dx(xlnx)2\dfrac{d\left( \dfrac{1}{x\ln x} \right)}{dx}=\dfrac{-\dfrac{d\left( x\ln x \right)}{dx}}{{{\left( x\ln x \right)}^{2}}}
Finally, we can use the product rule of differentiation to find the derivative in the numerator. The product rule of differentiation states that, for two function f and g,
d(f(x)g(x))dx=f(x)d(g(x))dx+g(x)d(f(x))dx\dfrac{d\left( f\left( x \right)g\left( x \right) \right)}{dx}=f\left( x \right)\dfrac{d\left( g\left( x \right) \right)}{dx}+g\left( x \right)\dfrac{d\left( f\left( x \right) \right)}{dx}
In our case, we can clearly see that f(x)f\left( x \right) is x and g(x)g\left( x \right) is lnx\ln x . Also, we know that the derivative of lnx\ln x is 1x\dfrac{1}{x} . Hence, we get,
d(1xlnx)dx=(xd(lnx)dx+lnxd(x)dx)(xlnx)2 d(1xlnx)dx=(x1x+lnx(1))(xlnx)2 d(1xlnx)dx=1+lnx(xlnx)2 \begin{aligned} & \dfrac{d\left( \dfrac{1}{x\ln x} \right)}{dx}=\dfrac{-\left( x\dfrac{d\left( \ln x \right)}{dx}+\ln x\dfrac{d\left( x \right)}{dx} \right)}{{{\left( x\ln x \right)}^{2}}} \\\ & \dfrac{d\left( \dfrac{1}{x\ln x} \right)}{dx}=\dfrac{-\left( x\dfrac{1}{x}+\ln x\left( 1 \right) \right)}{{{\left( x\ln x \right)}^{2}}} \\\ & \dfrac{d\left( \dfrac{1}{x\ln x} \right)}{dx}=-\dfrac{1+\ln x}{{{\left( x\ln x \right)}^{2}}} \\\ \end{aligned}
Therefore, the derivative of the given function is found to be equal to 1+lnx(xlnx)2-\dfrac{1+\ln x}{{{\left( x\ln x \right)}^{2}}}

Note: Another direct way to solve this problem, is by assuming xlnxx\ln x to be let’s say y. Then we can write,
d(1xlnx)dx=d(1y)dx d(1xlnx)dx=1y2×d(y)dx d(1xlnx)dx=1y2×d(1xlnx)dx d(1xlnx)dx=1+lnx(xlnx)2 \begin{aligned} & \dfrac{d\left( \dfrac{1}{x\ln x} \right)}{dx}=\dfrac{d\left( \dfrac{1}{y} \right)}{dx} \\\ & \dfrac{d\left( \dfrac{1}{x\ln x} \right)}{dx}=-\dfrac{1}{{{y}^{2}}}\times \dfrac{d\left( y \right)}{dx} \\\ & \dfrac{d\left( \dfrac{1}{x\ln x} \right)}{dx}=-\dfrac{1}{{{y}^{2}}}\times \dfrac{d\left( \dfrac{1}{x\ln x} \right)}{dx} \\\ & \dfrac{d\left( \dfrac{1}{x\ln x} \right)}{dx}=-\dfrac{1+\ln x}{{{\left( x\ln x \right)}^{2}}} \\\ \end{aligned}
Therefore, the derivative of the given function using the alternate method is found to be 1+lnx(xlnx)2-\dfrac{1+\ln x}{{{\left( x\ln x \right)}^{2}}}