Solveeit Logo

Question

Question: What is the derivative of \(3{{x}^{2}}\) using first principal?...

What is the derivative of 3x23{{x}^{2}} using first principal?

Explanation

Solution

We use the formula of dydx=limh0f(x+h)f(x)h\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} to find the derivative of 3x23{{x}^{2}}. We take a constant common and then use the theorem a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) to simplify the numerator. We put the limit value to find the final solution.

Complete step-by-step solution:
The derivative form of dydx\dfrac{dy}{dx} tends to a definite finite limit when Δx0\Delta x \to 0, then the limiting value obtained by this can also be found by first order derivatives. We can also apply first order derivative principle to get the differentiated value of f(x)=3x2f\left( x \right)=3{{x}^{2}}.
We know that dydx=limh0f(x+h)f(x)h\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}. Here f(x)=3x2f\left( x \right)=3{{x}^{2}}. Also, f(x+h)=3(x+h)2f\left( x+h \right)=3{{\left( x+h \right)}^{2}}.
So, dfdx=limh0f(x+h)f(x)h=limh03(x+h)23x2h\dfrac{df}{dx}=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}=\displaystyle \lim_{h \to 0}\dfrac{3{{\left( x+h \right)}^{2}}-3{{x}^{2}}}{h}.
We first take 3 common from the numerator and get limh03(x+h)23x2h=3limh0(x+h)2x2h\displaystyle \lim_{h \to 0}\dfrac{3{{\left( x+h \right)}^{2}}-3{{x}^{2}}}{h}=3\displaystyle \lim_{h \to 0}\dfrac{{{\left( x+h \right)}^{2}}-{{x}^{2}}}{h}
We now have to simplify the numerator of the limit. We use the formula a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right).
Therefore, (x+h)2x2=(x+h+x)(x+hx)=h(2x+h){{\left( x+h \right)}^{2}}-{{x}^{2}}=\left( x+h+x \right)\left( x+h-x \right)=h\left( 2x+h \right).
3limh0(x+h)2x2h=3limh0h(2x+h)h=3limh0(2x+h)3\displaystyle \lim_{h \to 0}\dfrac{{{\left( x+h \right)}^{2}}-{{x}^{2}}}{h}=3\displaystyle \lim_{h \to 0}\dfrac{h\left( 2x+h \right)}{h}=3\displaystyle \lim_{h \to 0}\left( 2x+h \right).
Now we use the limit value and get 3limh0(x+h)2x2h=3limh0(2x+h)=6x3\displaystyle \lim_{h \to 0}\dfrac{{{\left( x+h \right)}^{2}}-{{x}^{2}}}{h}=3\displaystyle \lim_{h \to 0}\left( 2x+h \right)=6x.
Therefore, derivative of 3x23{{x}^{2}} is 6x6x.

Note: Differentiation, the fundamental operations in calculus deals with the rate at which the dependent variable changes with respect to the independent variable. The measurement quantity of its rate of change is known as derivative or differential coefficients. We find the increment of those variables for small changes.
We know the limit value limxaxnanxa=nan1\displaystyle \lim_{x \to a}\dfrac{{{x}^{n}}-{{a}^{n}}}{x-a}=n{{a}^{n- 1}} which gives dfdx=nxn1\dfrac{df}{dx}=n{{x}^{n-1}}.
Therefore, ddx(3x2)=3×2×x21=6x\dfrac{d}{dx}\left( 3{{x}^{2}} \right)=3\times 2\times {{x}^{2-1}}=6x.
Thus, the derivative of the function f(x)=3x2f\left( x \right)=3{{x}^{2}} is verified.