Solveeit Logo

Question

Question: What is the cosecant and cotangent of \[\dfrac{\pi }{3}\] ?...

What is the cosecant and cotangent of π3\dfrac{\pi }{3} ?

Explanation

Solution

Hint : Here in this question, we have to find the value of trigonometric ratio cosecant and cotangent at an angle of π3\dfrac{\pi }{3} . This can be found by using the equilateral triangle and Pythagora's identity. And later by using the definition of cosecant and cotangent ratios of trigonometric on simplification, we get the required solution.

Complete step by step solution:

to 60{60^ \circ } i.e., π3=60\dfrac{\pi }{3} = {60^ \circ } .
Consider an equilateral triangle ABC. Since each angle in an equilateral triangle is 60°, therefore, !A=!B=!C=60\left| \\!{\underline {\, A \,}} \right. = \left| \\!{\underline {\, B \,}} \right. = \left| \\!{\underline {\, C \,}} \right. = {60^ \circ }
Draw the perpendicular AD from A to the side BC.
ΔABDΔACD\therefore \,\,\Delta \,ABD \cong \Delta \,ACD
ΔABD\Delta \,ABD is a right triangle, right-angled at D with !BAD=30\left| \\!{\underline {\, {BAD} \,}} \right. = {30^ \circ } and !ABD=60\left| \\!{\underline {\, {ABD} \,}} \right. = {60^ \circ }
For finding the trigonometric ratios, we need to know the lengths of the sides of the triangle. So, let us suppose that AB=AC=BC=2aAB = AC = BC = 2a . Then,
BD=12BC\Rightarrow \,BD = \dfrac{1}{2}BC
BD=12BC\Rightarrow \,BD = \dfrac{1}{2}BC
BD=122a\Rightarrow \,BD = \dfrac{1}{2} \cdot 2a
BD=a\Rightarrow \,BD = a
Now, the height of the ΔABC\Delta \,ABC is AD then by Pythagoras theorem i.e., AB2=AD2+BD2A{B^2} = A{D^2} + B{D^2} , then
AD2=AB2BD2\Rightarrow \,\,A{D^2} = A{B^2} - B{D^2}
AD2=(2a)2(a)2\Rightarrow \,\,A{D^2} = {\left( {2a} \right)^2} - {\left( a \right)^2}
AD2=4a2a2\Rightarrow \,\,A{D^2} = 4{a^2} - {a^2}
AD2=3a2\Rightarrow \,\,A{D^2} = 3{a^2}
AD=3a2\Rightarrow \,\,AD = \sqrt {3{a^2}}
On simplification, we get
AD=3a\Rightarrow \,\,AD = \sqrt 3 \,a
In ΔABD\Delta \,ABD , for the angle !A=60=π3\left| \\!{\underline {\, A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3} , side AD is a opposite side, AB is hypotenuse and BD acts as a adjacent side, then
Now, use the definition of trigonometric ratios
Definition of sine ratio at !A=60=π3\left| \\!{\underline {\, A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3} is:
sin(π3)=OppositeHypotenuse\sin \left( {\dfrac{\pi }{3}} \right) = \dfrac{{Opposite}}{{Hypotenuse}}
sin(π3)=ADAB\Rightarrow \,\sin \left( {\dfrac{\pi }{3}} \right) = \dfrac{{AD}}{{AB}}
sin(π3)=3a2a\Rightarrow \,\sin \left( {\dfrac{\pi }{3}} \right) = \dfrac{{\sqrt 3 a}}{{2a}}
On simplification, we get
sin(π3)=32\Rightarrow \,\sin \left( {\dfrac{\pi }{3}} \right) = \dfrac{{\sqrt 3 }}{2}
Definition of cosine ratio at !A=60=π3\left| \\!{\underline {\, A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3} is:
cos(π3)=AdjacentHypotenuse\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{{Adjacent}}{{Hypotenuse}}
cos(π3)=BDAB\Rightarrow \,\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{{BD}}{{AB}}
cos(π3)=a2a\Rightarrow \,\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{a}{{2a}}
On simplification, we get
cos(π3)=12\Rightarrow \,\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}
As we know, by the definition of trigonometric ratios cosecant is a reciprocal of sine.
Cosecant ratio at !A=60=π3\left| \\!{\underline {\, A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3} is:
csc(π3)=1sin(π3)\csc \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{{\sin \left( {\dfrac{\pi }{3}} \right)}}
On substituting value of sin(π3)\sin \left( {\dfrac{\pi }{3}} \right) , we have
csc(π3)=132\Rightarrow \,\,\csc \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}
On simplification, we get
csc(π3)=23\Rightarrow \,\,\csc \left( {\dfrac{\pi }{3}} \right) = \dfrac{2}{{\sqrt 3 }}
Again, by the definition we know, cotangent is the ratio between the cosine and sine, then
cotangent ratio at !A=60=π3\left| \\!{\underline {\, A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3} is:
On substituting value of cos(π3)\cos \left( {\dfrac{\pi }{3}} \right) and sin(π3)\sin \left( {\dfrac{\pi }{3}} \right) , we have
cot(π3)=cos(π3)sin(π3)\Rightarrow \,\,\cot \left( {\dfrac{\pi }{3}} \right) = \dfrac{{\cos \left( {\dfrac{\pi }{3}} \right)}}{{\sin \left( {\dfrac{\pi }{3}} \right)}}
cot(π3)=1232\Rightarrow \,\,\cot \left( {\dfrac{\pi }{3}} \right) = \dfrac{{\dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}
cot(π3)=12×23\Rightarrow \,\,\cot \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} \times \dfrac{2}{{\sqrt 3 }}
On simplification, we get
cot(π3)=13\Rightarrow \,\,\cot \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{{\sqrt 3 }}
Hence, the value of csc(π3)=23\csc \left( {\dfrac{\pi }{3}} \right) = \dfrac{2}{{\sqrt 3 }} and cot(π3)=13\cot \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{{\sqrt 3 }}
So, the correct answer is “ csc(π3)=23\csc \left( {\dfrac{\pi }{3}} \right) = \dfrac{2}{{\sqrt 3 }} and cot(π3)=13\cot \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{{\sqrt 3 }} ”.

Note : When solving these type of questions, first we have to know the definition of six trigonometric ratios i.e., sine, cosine, tangent, secant, cosecant and cotangent and know the property of equilateral triangle i.e., all sides and angles of equilateral triangle is equal and know the formula of Pythagoras theorem i.e., hyp2=adj2+opp2hy{p^2} = ad{j^2} + op{p^2} .