Solveeit Logo

Question

Question: what is the coefficient of x^0 in ((x+1)^m)*((1+1/(x))^n)...

what is the coefficient of x^0 in ((x+1)^m)*((1+1/(x))^n)

Answer

binom(m+n, n)

Explanation

Solution

To find the coefficient of x0x^0 in the given expression, we first simplify the expression:

The given expression is ((x+1)m)((1+1/(x))n)((x+1)^m)*((1+1/(x))^n).

Step 1: Simplify the term (1+1/x)(1+1/x). 1+1x=x+1x1 + \frac{1}{x} = \frac{x+1}{x}

Step 2: Substitute this back into the original expression. ((x+1)m)((x+1x)n)((x+1)^m) * \left(\left(\frac{x+1}{x}\right)^n\right) =(x+1)m(x+1)nxn= (x+1)^m * \frac{(x+1)^n}{x^n} =(x+1)m+nxn= \frac{(x+1)^{m+n}}{x^n} =xn(x+1)m+n= x^{-n} (x+1)^{m+n}

Step 3: Expand (x+1)m+n(x+1)^{m+n} using the binomial theorem. The binomial theorem states that (a+b)N=k=0N(Nk)aNkbk(a+b)^N = \sum_{k=0}^{N} \binom{N}{k} a^{N-k} b^k. Here, a=xa=x, b=1b=1, and N=m+nN=m+n. So, (x+1)m+n=k=0m+n(m+nk)xk1m+nk=k=0m+n(m+nk)xk(x+1)^{m+n} = \sum_{k=0}^{m+n} \binom{m+n}{k} x^k 1^{m+n-k} = \sum_{k=0}^{m+n} \binom{m+n}{k} x^k.

Step 4: Multiply the expanded form by xnx^{-n}. xnk=0m+n(m+nk)xk=k=0m+n(m+nk)xknx^{-n} \sum_{k=0}^{m+n} \binom{m+n}{k} x^k = \sum_{k=0}^{m+n} \binom{m+n}{k} x^{k-n}

Step 5: Identify the term for which the power of xx is 00. We need xkn=x0x^{k-n} = x^0, which implies kn=0k-n = 0. Therefore, k=nk=n.

Step 6: Substitute k=nk=n into the general term to find the coefficient. The coefficient of x0x^0 is (m+nn)\binom{m+n}{n}.

Alternatively, using the property (Nk)=(NNk)\binom{N}{k} = \binom{N}{N-k}, we can also write (m+nn)\binom{m+n}{n} as (m+n(m+n)n)=(m+nm)\binom{m+n}{(m+n)-n} = \binom{m+n}{m}.

The final answer is (m+nn)\boxed{\binom{m+n}{n}}.

Explanation of the solution: The expression is simplified to xn(x+1)m+nx^{-n}(x+1)^{m+n}. The binomial expansion of (x+1)m+n(x+1)^{m+n} is k=0m+n(m+nk)xk\sum_{k=0}^{m+n} \binom{m+n}{k} x^k. Multiplying by xnx^{-n}, we get k=0m+n(m+nk)xkn\sum_{k=0}^{m+n} \binom{m+n}{k} x^{k-n}. For the coefficient of x0x^0, we set the exponent kn=0k-n=0, which gives k=nk=n. Substituting k=nk=n into the binomial coefficient gives (m+nn)\binom{m+n}{n}.