Solveeit Logo

Question

Question: What is the coefficient of \({x^{2017}}\) in \(\sum\limits_{r = 0}^{2020} {{}^{2020}{C_r}} {\left( {...

What is the coefficient of x2017{x^{2017}} in r=020202020Cr(x2018)2020r(2017)r\sum\limits_{r = 0}^{2020} {{}^{2020}{C_r}} {\left( {x - 2018} \right)^{2020 - r}}{\left( {2017} \right)^r} ?

Explanation

Solution

Start with expanding the given summation r=020202020Cr(x2018)2020r(2017)r\sum\limits_{r = 0}^{2020} {{}^{2020}{C_r}} {\left( {x - 2018} \right)^{2020 - r}}{\left( {2017} \right)^r} . Now write the binomial theorem, i.e. expansion of (a+b)n{\left( {a + b} \right)^n} . Now compare both the equations and find the value of given summation in a (a+b)n{\left( {a + b} \right)^n} form. Now again use the binomial theorem to expand the new expression. Find the term containing x2017{x^{2017}} in the expansion and write its coefficient.

Complete step-by-step answer:
Here in this problem, we are given with an expression r=020202020Cr(x2018)2020r(2017)r\sum\limits_{r = 0}^{2020} {{}^{2020}{C_r}} {\left( {x - 2018} \right)^{2020 - r}}{\left( {2017} \right)^r} and we need to find the coefficient of x2017{x^{2017}} in the expansion of the given summation.
The summation given in the expression can be expanded as:
r=020202020Cr(x2018)2020r(2017)r=2020C0(x2018)20200(2017)0+2020C1(x2018)20201(2017)1+\sum\limits_{r = 0}^{2020} {{}^{2020}{C_r}} {\left( {x - 2018} \right)^{2020 - r}}{\left( {2017} \right)^r} = {}^{2020}{C_0}{\left( {x - 2018} \right)^{2020 - 0}}{\left( {2017} \right)^0} + {}^{2020}{C_1}{\left( {x - 2018} \right)^{2020 - 1}}{\left( {2017} \right)^1} + ......+2020C2019(x2018)20202019(2017)2019+2020C2020(x2018)20202020(2017)2020...... + {}^{2020}{C_{2019}}{\left( {x - 2018} \right)^{2020 - 2019}}{\left( {2017} \right)^{2019}} + {}^{2020}{C_{2020}}{\left( {x - 2018} \right)^{2020 - 2020}}{\left( {2017} \right)^{2020}}
Now let’s further solve the above expansion
r=020202020Cr(x2018)2020r(2017)r=2020C0(x2018)2020(2017)0+2020C1(x2018)2019(2017)+\Rightarrow \sum\limits_{r = 0}^{2020} {{}^{2020}{C_r}} {\left( {x - 2018} \right)^{2020 - r}}{\left( {2017} \right)^r} = {}^{2020}{C_0}{\left( {x - 2018} \right)^{2020}}{\left( {2017} \right)^0} + {}^{2020}{C_1}{\left( {x - 2018} \right)^{2019}}\left( {2017} \right) + ......+2020C2019(x2018)1(2017)2019+2020C2020(x2018)0(2017)2020...... + {}^{2020}{C_{2019}}{\left( {x - 2018} \right)^1}{\left( {2017} \right)^{2019}} + {}^{2020}{C_{2020}}{\left( {x - 2018} \right)^0}{\left( {2017} \right)^{2020}}
We can now use the identity a0=1 and a1=a{a^0} = 1{\text{ and }}{a^1} = a in the above series as:
r=020202020Cr(x2018)2020r(2017)r=2020C0(x2018)2020+2020C1(x2018)2019(2017)+\Rightarrow \sum\limits_{r = 0}^{2020} {{}^{2020}{C_r}} {\left( {x - 2018} \right)^{2020 - r}}{\left( {2017} \right)^r} = {}^{2020}{C_0}{\left( {x - 2018} \right)^{2020}} + {}^{2020}{C_1}{\left( {x - 2018} \right)^{2019}}\left( {2017} \right) +
......+2020C2019(x2018)(2017)2019+2020C2020(2017)2020...... + {}^{2020}{C_{2019}}\left( {x - 2018} \right){\left( {2017} \right)^{2019}} + {}^{2020}{C_{2020}}{\left( {2017} \right)^{2020}} ……….(i)
Also, we have the binomial expansion as:
(a+b)n=nC0an+nC1an1b+nC2an2b2+......+nCn1abn1+nCnbn{\left( {a + b} \right)^n} = {}^n{C_0}{a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + ...... + {}^n{C_{n - 1}}a{b^{n - 1}} + {}^n{C_n}{b^n} ...........(ii)
Now by comparing RHS of equation (i) and (ii), we can say that
a=(x2018) ; b=2017 ; n=2020\Rightarrow a = \left( {x - 2018} \right){\text{ ; }}b = 2017{\text{ ; }}n = 2020 ......(iii)
Thus, we can also compare the LHS of the equation (i) and (ii) as
r=020202020Cr(x2018)2020r(2017)r=(a+b)n\Rightarrow \sum\limits_{r = 0}^{2020} {{}^{2020}{C_r}} {\left( {x - 2018} \right)^{2020 - r}}{\left( {2017} \right)^r} = {\left( {a + b} \right)^n}
Now we can substitute the values obtained in (iii) in the above equation:
r=020202020Cr(x2018)2020r(2017)r=(a+b)n=(x2018+2017)2020\Rightarrow \sum\limits_{r = 0}^{2020} {{}^{2020}{C_r}} {\left( {x - 2018} \right)^{2020 - r}}{\left( {2017} \right)^r} = {\left( {a + b} \right)^n} = {\left( {x - 2018 + 2017} \right)^{2020}}
Therefore, for the given expression we get a simplified form as:
r=020202020Cr(x2018)2020r(2017)r=(x1)2020\Rightarrow \sum\limits_{r = 0}^{2020} {{}^{2020}{C_r}} {\left( {x - 2018} \right)^{2020 - r}}{\left( {2017} \right)^r} = {\left( {x - 1} \right)^{2020}}
We just need to find the coefficient of x2017{x^{2017}} in the expansion of (x1)2020{\left( {x - 1} \right)^{2020}}. And the expansion for (x1)2020{\left( {x - 1} \right)^{2020}} can easily be given by the use of binomial expansion (ii).
\Rightarrow For (x1)2020{\left( {x - 1} \right)^{2020}}, in identity (ii), we have: a=x,b=1 and n=2020a = x,b = - 1{\text{ and }}n = 2020
So we can write the binomial expansion for (x1)2020{\left( {x - 1} \right)^{2020}} using (ii), as:
(x1)2020=2020C0x2020+2020C1x20201(1)+2020C2x20202(1)2+2020C3x20203(1)3......\Rightarrow {\left( {x - 1} \right)^{2020}} = {}^{2020}{C_0}{x^{2020}} + {}^{2020}{C_1}{x^{2020 - 1}}\left( { - 1} \right) + {}^{2020}{C_2}{x^{2020 - 2}}{\left( { - 1} \right)^2} + {}^{2020}{C_3}{x^{2020 - 3}}{\left( { - 1} \right)^3}......
......+2020C20202x2(1)20202+2020C20201x(1)20201+2020C2020(1)2020...... + {}^{2020}{C_{2020 - 2}}{x^2}{\left( { - 1} \right)^{2020 - 2}} + {}^{2020}{C_{2020 - 1}}x{\left( { - 1} \right)^{2020 - 1}} + {}^{2020}{C_{2020}}{\left( { - 1} \right)^{2020}}
Thus, from the above expansion, we can see that each term contains x'x' raised to a different power from 020200 - 2020 .
Only the fourth term from the beginning which contains x2017{x^{2017}} in it and thus the coefficient of this power can be evaluated by evaluating that term
\Rightarrow The fourth term of the expansion =2020C3x20203(1)3=2020C3x2017(1)3 = {}^{2020}{C_3}{x^{2020 - 3}}{\left( { - 1} \right)^3} = {}^{2020}{C_3}{x^{2017}}{\left( { - 1} \right)^3}
Therefore, the coefficient of x2017{x^{2017}} =2020C3(1)3=2020C3 = {}^{2020}{C_3}{\left( { - 1} \right)^3} = - {}^{2020}{C_3}

Note: Be careful with the signs and parenthesis while expanding the binomial expression. In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or any expression; it is usually a number, but maybe any expression. Also remember the property of combinations that says: nCr=nCnr{}^n{C_r} = {}^n{C_{n - r}} . The answer that we got, i.e. 2020C3 - {}^{2020}{C_3}, can also be written as 2020C20203=2020C2017 - {}^{2020}{C_{2020 - 3}} = - {}^{2020}{C_{2017}} and it will still be the same numerically.