Solveeit Logo

Question

Question: What is the coefficient of \({x^{10}}\) in the expansion of \({\left( {1 + x} \right)^2}{\left( {1 +...

What is the coefficient of x10{x^{10}} in the expansion of (1+x)2(1+x2)3(1+x3)4{\left( {1 + x} \right)^2}{\left( {1 + {x^2}} \right)^3}{\left( {1 + {x^3}} \right)^4}?
A. 52 B. 44 C. 50 D. 56  {\text{A}}{\text{. 52}} \\\ {\text{B}}{\text{. 44}} \\\ {\text{C}}{\text{. 50}} \\\ {\text{D}}{\text{. 56}} \\\

Explanation

Solution

Hint- Here, we will proceed by expanding (1+x)2{\left( {1 + x} \right)^2}, (1+x2)3{\left( {1 + {x^2}} \right)^3} and (1+x3)4{\left( {1 + {x^3}} \right)^4} individually using the binomial theorem and then, we will multiply all these terms together and consider only the terms which will contain x10{x^{10}} in the final expansion.

Complete step by step answer:
According to binomial theorem,
(1+x)n=nC0+nC1(x)+nC2(x2)+...+nCn1(xn1)+nCn(xn) (1){\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}\left( x \right) + {}^n{C_2}\left( {{x^2}} \right) + ... + {}^n{C_{n - 1}}\left( {{x^{n - 1}}} \right) + {}^n{C_n}\left( {{x^n}} \right){\text{ }} \to (1{\text{)}} where nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}
By putting n = 2 in the formula given by equation (1), we have
(1+x)2=2C0+2C1(x)+2C2(x2) (2){\left( {1 + x} \right)^2} = {}^2{C_0} + {}^2{C_1}\left( x \right) + {}^2{C_2}\left( {{x^2}} \right){\text{ }} \to {\text{(2)}}
By putting n = 3 and replacing x with x2{x^2} in the formula given by equation (1), we have

(1+x2)3=3C0+3C1(x2)+3C2[(x2)2]+3C3[(x2)3] (1+x2)3=3C0+3C1(x2)+3C2(x4)+3C3(x6) (3)  {\left( {1 + {x^2}} \right)^3} = {}^3{C_0} + {}^3{C_1}\left( {{x^2}} \right) + {}^3{C_2}\left[ {{{\left( {{x^2}} \right)}^2}} \right] + {}^3{C_3}\left[ {{{\left( {{x^2}} \right)}^3}} \right] \\\ \Rightarrow {\left( {1 + {x^2}} \right)^3} = {}^3{C_0} + {}^3{C_1}\left( {{x^2}} \right) + {}^3{C_2}\left( {{x^4}} \right) + {}^3{C_3}\left( {{x^6}} \right){\text{ }} \to {\text{(3)}} \\\

By putting n = 4 and replacing x with x3{x^3} in the formula given by equation (1), we have

(1+x3)4=4C0+4C1(x3)+4C2[(x3)2]+4C3[(x3)3]+4C4[(x3)4] (1+x3)4=4C0+4C1(x3)+4C2(x6)+4C3(x9)+4C4(x12) (4)  {\left( {1 + {x^3}} \right)^4} = {}^4{C_0} + {}^4{C_1}\left( {{x^3}} \right) + {}^4{C_2}\left[ {{{\left( {{x^3}} \right)}^2}} \right] + {}^4{C_3}\left[ {{{\left( {{x^3}} \right)}^3}} \right] + {}^4{C_4}\left[ {{{\left( {{x^3}} \right)}^4}} \right] \\\ \Rightarrow {\left( {1 + {x^3}} \right)^4} = {}^4{C_0} + {}^4{C_1}\left( {{x^3}} \right) + {}^4{C_2}\left( {{x^6}} \right) + {}^4{C_3}\left( {{x^9}} \right) + {}^4{C_4}\left( {{x^{12}}} \right){\text{ }} \to {\text{(4)}} \\\

Multiplying all three equations (2), (3) and (4) together, we get

(1+x)2(1+x2)3(1+x3)4=(2C0+2C1x+2C2x2)(3C0+3C1x2+3C2x4+3C3x6)(4C0+4C1x3+4C2x6+4C3x9+4C4x12) (1+x)2(1+x2)3(1+x3)4=(1+2x+x2)(1+3x2+3x4+x6)(1+4x3+6x6+4x9+x12) (1+x)2(1+x2)3(1+x3)4=(1+2x+x2+3x2+6x3+3x4+3x4+6x5+3x6+x6+2x7+x8)(1+4x3+6x6+4x9+x12) (1+x)2(1+x2)3(1+x3)4=(1+2x+4x2+6x3+6x4+6x5+4x6+2x7+x8)(1+4x3+6x6+4x9+x12)  \Rightarrow {\left( {1 + x} \right)^2}{\left( {1 + {x^2}} \right)^3}{\left( {1 + {x^3}} \right)^4} = \left( {{}^2{C_0} + {}^2{C_1}x + {}^2{C_2}{x^2}} \right)\left( {{}^3{C_0} + {}^3{C_1}{x^2} + {}^3{C_2}{x^4} + {}^3{C_3}{x^6}} \right)\left( {{}^4{C_0} + {}^4{C_1}{x^3} + {}^4{C_2}{x^6} + {}^4{C_3}{x^9} + {}^4{C_4}{x^{12}}} \right) \\\ \Rightarrow {\left( {1 + x} \right)^2}{\left( {1 + {x^2}} \right)^3}{\left( {1 + {x^3}} \right)^4} = \left( {1 + 2x + {x^2}} \right)\left( {1 + 3{x^2} + 3{x^4} + {x^6}} \right)\left( {1 + 4{x^3} + 6{x^6} + 4{x^9} + {x^{12}}} \right) \\\ \Rightarrow {\left( {1 + x} \right)^2}{\left( {1 + {x^2}} \right)^3}{\left( {1 + {x^3}} \right)^4} = \left( {1 + 2x + {x^2} + 3{x^2} + 6{x^3} + 3{x^4} + 3{x^4} + 6{x^5} + 3{x^6} + {x^6} + 2{x^7} + {x^8}} \right)\left( {1 + 4{x^3} + 6{x^6} + 4{x^9} + {x^{12}}} \right) \\\ \Rightarrow {\left( {1 + x} \right)^2}{\left( {1 + {x^2}} \right)^3}{\left( {1 + {x^3}} \right)^4} = \left( {1 + 2x + 4{x^2} + 6{x^3} + 6{x^4} + 6{x^5} + 4{x^6} + 2{x^7} + {x^8}} \right)\left( {1 + 4{x^3} + 6{x^6} + 4{x^9} + {x^{12}}} \right) \\\

Now we want the coefficient of x10{x^{10}} so in above equation (2x)\left( {2x} \right) multiplied by $$$$ similarly,
(6x4)\left( {6{x^4}} \right) multiplied by (6x6)\left( {6{x^6}} \right) and (2x7)\left( {2{x^7}} \right) multiplied by (4x3)\left( {4{x^3}} \right) to get the term x10{x^{10}}.
So the coefficient of x10{x^{10}} =(2×4)+(6×6)+(2×4) = \left( {2 \times 4} \right) + \left( {6 \times 6} \right) + \left( {2 \times 4} \right)
\RightarrowCoefficient of x10{x^{10}} in the expansion of (1+x)2(1+x2)3(1+x3)4=8+36+8=52{\left( {1 + x} \right)^2}{\left( {1 + {x^2}} \right)^3}{\left( {1 + {x^3}} \right)^4} = 8 + 36 + 8 = 52

Hence option (A) is correct.

Note- In this particular problem, in the final expansion i.e., (1+x)2(1+x2)3(1+x3)4=(1+2x+4x2+6x3+6x4+6x5+4x6+2x7+x8)(1+4x3+6x6+4x9+x12){\left( {1 + x} \right)^2}{\left( {1 + {x^2}} \right)^3}{\left( {1 + {x^3}} \right)^4} = \left( {1 + 2x + 4{x^2} + 6{x^3} + 6{x^4} + 6{x^5} + 4{x^6} + 2{x^7} + {x^8}} \right)\left( {1 + 4{x^3} + 6{x^6} + 4{x^9} + {x^{12}}} \right), only those terms are multiplied which are giving x10{x^{10}}. Then, all the coefficients are algebraically added (i.e., along with the sign) in order to get the final coefficient of x10{x^{10}} because here x10{x^{10}} would be taken outside since, it is common to all these terms.