Solveeit Logo

Question

Question: What is the binomial expansion of \({{\left( 2x-1 \right)}^{5}}\) ?...

What is the binomial expansion of (2x1)5{{\left( 2x-1 \right)}^{5}} ?

Explanation

Solution

In this question, we will first write our expression as, (1)5(12x)5{{\left( -1 \right)}^{5}}{{\left( 1-2x \right)}^{5}} . Now, the second term in our resulting expression could be expanded with the help of standard binomial expansion formula. This formula is given can be written as:
(1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+.......\Rightarrow {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!}{{x}^{3}}+....... . We shall proceed with our solution in this manner.

Complete step by step answer:
We have been given the mathematical expression in our problem as: (2x1)5{{\left( 2x-1 \right)}^{5}}
Taking (1)5{{\left( -1 \right)}^{5}} common from our expression, we can write the new expression as:
(2x1)5=(1)5(12x)5 (2x1)5=(12x)5 \begin{aligned} & \Rightarrow {{\left( 2x-1 \right)}^{5}}={{\left( -1 \right)}^{5}}{{\left( 1-2x \right)}^{5}} \\\ & \therefore {{\left( 2x-1 \right)}^{5}}=-{{\left( 1-2x \right)}^{5}} \\\ \end{aligned}
Now, in the binomial expansion formula, we can replace the term (x)\left( x \right) by the term (2x)\left( -2x \right) to get our required solution. While writing the expansion series, we will include terms only up to the term with the highest degree in (x)\left( x \right) . The highest degree term in our expansion will be x5{{x}^{5}}, so we will include the term containing x5{{x}^{5}} as the last term of our series and no further terms will be included.
Thus, we have:
(2x1)5=[1+(2x)]5\Rightarrow {{\left( 2x-1 \right)}^{5}}=-{{\left[ 1+\left( -2x \right) \right]}^{5}}
Applying the binomial expansion formula in the Right-Hand Side of our equation, we get:(2x1)5=[1+5(2x)+5(51)2!(2x)2+5(51)(52)3!(2x)3+5(51)(52)(53)4!(2x)4 +5(51)(52)(53)(54)5!(2x)5 ]\Rightarrow {{\left( 2x-1 \right)}^{5}}=-\left[ \begin{aligned} & 1+5\left( -2x \right)+\dfrac{5\left( 5-1 \right)}{2!}{{\left( -2x \right)}^{2}}+\dfrac{5\left( 5-1 \right)\left( 5-2 \right)}{3!}{{\left( -2x \right)}^{3}}+\dfrac{5\left( 5-1 \right)\left( 5-2 \right)\left( 5-3 \right)}{4!}{{\left( -2x \right)}^{4}} \\\ & +\dfrac{5\left( 5-1 \right)\left( 5-2 \right)\left( 5-3 \right)\left( 5-4 \right)}{5!}{{\left( -2x \right)}^{5}} \\\ \end{aligned} \right]
Simplifying all the terms in our equation, we get the new expression as:
(2x1)5=[110x+5×42×1(4x2)5×4×33×2×1(8x3)+5×4×3×24×3×2×1(16x4)5×4×3×2×15×4×3×2×1(32x5)]\Rightarrow {{\left( 2x-1 \right)}^{5}}=-\left[ 1-10x+\dfrac{5\times 4}{2\times 1}\left( 4{{x}^{2}} \right)-\dfrac{5\times 4\times 3}{3\times 2\times 1}\left( 8{{x}^{3}} \right)+\dfrac{5\times 4\times 3\times 2}{4\times 3\times 2\times 1}\left( 16{{x}^{4}} \right)-\dfrac{5\times 4\times 3\times 2\times 1}{5\times 4\times 3\times 2\times 1}\left( 32{{x}^{5}} \right) \right]
On further simplification, we get the end result of our calculation as:
(2x1)5=[110x+40x280x3+80x432x5] (2x1)5=1+10x40x2+80x380x4+32x5 \begin{aligned} & \Rightarrow {{\left( 2x-1 \right)}^{5}}=-\left[ 1-10x+40{{x}^{2}}-80{{x}^{3}}+80{{x}^{4}}-32{{x}^{5}} \right] \\\ & \therefore {{\left( 2x-1 \right)}^{5}}=-1+10x-40{{x}^{2}}+80{{x}^{3}}-80{{x}^{4}}+32{{x}^{5}} \\\ \end{aligned}

Hence, the binomial expansion of (2x1)5{{\left( 2x-1 \right)}^{5}} comes out to be 1+10x40x2+80x380x4+32x5-1+10x-40{{x}^{2}}+80{{x}^{3}}-80{{x}^{4}}+32{{x}^{5}}

Note: The binomial expansion is a very useful and important formula for expanding any mathematical expression. The standard formulas of (a+b)2{{\left( a+b \right)}^{2}} and (a+b)3{{\left( a+b \right)}^{3}} have all been derived with the help of this binomial expansion. All the terms in a binomial expansion of (a+b)m{{\left( a+b \right)}^{m}} have their coefficient as aibj{{a}^{i}}{{b}^{j}} which can be used as a tool to validate our binomial expansion in problems.