Solveeit Logo

Question

Mathematics Question on Straight lines

What is the area of the triangle whose vertices are (0,0,0) (3, 4, 0) and (3, 4, 6) ?

A

12 square units

B

15 square units

C

30 square units

D

36 square units

Answer

15 square units

Explanation

Solution

Let A (0, 0, 0), B (3, 4, 0) and C (3, 4, 6) Area, (Δ)=(Δx2+Δy2+Δ2)(\Delta ) = \sqrt{(\Delta x^2 + \Delta y^2 + \Delta^2}) Now, Δx=12y1z11 y2z21 y3z31=12001 401 461\Delta x = \frac{1}{2} \begin{vmatrix}y_{1}&z_{1}&1\\\ y_{2}&z_{2}&1\\\ y_{3}&z_{3}&1\end{vmatrix} = \frac{1}{2} \begin{vmatrix}0&0&1\\\ 4 &0&1\\\ 4&6&1\end{vmatrix} =12[1(24)]=12= \frac{1}{2}\left[1\left(24\right)\right] = 12 Similarly, Δy=12001 031 631=12[1(8)]=9\Delta y = \frac{1}{2} \begin{vmatrix}0&0&1\\\ 0 &3&1\\\ 6 &3&1\end{vmatrix} = \frac{1}{2}\left[1\left(-8\right)\right]=-9 and Δz=12001 341 341=12[1212]=0\Delta z = \frac{1}{2}\begin{vmatrix}0&0&1\\\ 3&4&1\\\ 3&4&1\end{vmatrix} = \frac{1}{2}\left[12-12\right]=0 Area of Δ=122+(9)2+(0)2\Delta = \sqrt{12^{2} + \left(-9\right)^{2} +\left(0\right)^{2}} =144+81=225=15= \sqrt{144+81} = \sqrt{225} = 15 square units