Solveeit Logo

Question

Mathematics Question on applications of integrals

What is the area of the region bounded by the line 3x - 5y = 15, x =1, x = 3 and x-axis in sq unit ?

A

365\frac{36}{5}

B

185\frac{18}{5}

C

95\frac{9}{5}

D

35\frac{3}{5}

Answer

185\frac{18}{5}

Explanation

Solution

The given equation of line can be rewritten as x5y3=1\frac{x}{5} - \frac{y}{3} = 1 and y=3x155y = \frac{3x-15}{5} \therefore Required area =13ydx= \int^{3}_{1} ydx =13(3x155)dx=1513(3x15)dx= \int^{3}_{1} \left(\frac{3x-15}{5}\right)dx = \frac{1}{5} \int^{3}_{1} \left(3x-15\right)dx =15[3x2215x]13=15[2724532+15]= \frac{1}{5} \left[\frac{3x^{2}}{2} - 15x\right]^{3}_{1} = \frac{1}{5} \left[\frac{27}{2} - 45 - \frac{3}{2} + 15\right] =15[24230]=15[1230]= \frac{1}{5} \left[\frac{24}{2} - 30\right] = \frac{1}{5}\left[12 - 30\right] =185=185= \frac{-18}{5} = \frac{18}{5} sq unit (neglecting -ve sign)