Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

What is the area of a loop of the curve r=asin3θr = a \sin^3 \theta ?

A

πa26\frac{\pi a^2}{6}

B

πa28\frac{\pi a^2}{8}

C

πa212\frac{\pi a^2}{12}

D

πa224\frac{\pi a^2}{24}

Answer

πa224\frac{\pi a^2}{24}

Explanation

Solution

If curve r=asin3θr = a \sin \, 3\theta To trace the curve, we consider the following table : Thus there is a loop between θ=0\theta = 0 & θ=π3\theta = \frac{\pi}{3} as r varies from r=0r = 0 to r=0r = 0. Hence, the area of the loop lying in the positive quadrant =120π3r2dθ= \frac{1}{2} \int^{\frac{\pi}{3}}_{0} r^{2} d \theta =120π3sin2ϕ.13dϕ= \frac{1}{2} \int ^{\frac{\pi }{3}}_{0}\sin^{2} \phi . \frac{1}{3} d\phi [On putting, 3θ=ϕdθ=13dϕ3\theta = \phi \Rightarrow d\theta = \frac{1}{3} d\phi] =a260π2sin2ϕdϕ= \frac{a^{2}}{6} \int ^{\frac{\pi }{2}}_{0} \sin^{2} \phi d\phi =a26.0π21cos2ϕ2dϕ[cos2θ=12sin2θ]= \frac{a^{2}}{6}. \int^{\frac{\pi}{2}}_{0} \frac{1 - \cos 2\phi}{2} d\phi \left[ \because \, \, \cos 2\theta = 1 - 2 \sin^{2} \theta\right] =a212.[ϕ+sin2ϕ2]0π2 = \frac{a^{2}}{12} . \left[\phi + \frac{\sin 2 \phi}{2}\right]^{\frac{\pi}{2}}_{0} =a212.[π2+sinπ]=a2π24 = \frac{a^{2}}{12}. \left[ \frac{\pi}{2} + \sin \pi\right] = \frac{a^{2} \pi}{24}