Solveeit Logo

Question

Question: What is the area and perimeter of quadrilateral \[ABCD\] with vertices \[A\left( {6,5} \right),{\tex...

What is the area and perimeter of quadrilateral ABCDABCD with vertices A(6,5), B(2,4), C(5,2)A\left( {6,5} \right),{\text{ }}B\left( {2, - 4} \right),{\text{ }}C\left( { - 5,2} \right) and D(3,6)D\left( { - 3,6} \right) ?

Explanation

Solution

In this question, first we will draw a quadrilateral ABCDABCD and then divide the quadrilateral in two triangles (using either of the diagonals). After that we will find the length of the sides of the triangle using distance formula i.e., d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} . After that we will find the area of both the triangles using the formula s(sa)(sb)(sc)\sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} where s=a+b+c2s = \dfrac{{a + b + c}}{2} and a,b,ca,b,c are the sides of the triangle. Then we will find the area of the quadrilateral by adding the area of the two triangles. We will finally find the perimeter of the given quadrilateral by finding the sum of all its sides.

Complete step by step answer:
Let the vertices of the quadrilateral be A(6,5), B(2,4), C(5,2)A\left( {6,5} \right),{\text{ }}B\left( {2, - 4} \right),{\text{ }}C\left( { - 5,2} \right) and D(3,6)D\left( { - 3,6} \right). Let ACAC be the diagonal of quadrilateral ABCDABCD

In the above figure, ABCDABCD has been divided into ABC\vartriangle ABC and ADC\vartriangle ADC. Now let us find the length of their sides,
Using formula d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
Therefore, AB=(26)2+(45)2AB = \sqrt {{{\left( {2 - 6} \right)}^2} + {{\left( { - 4 - 5} \right)}^2}}
AB=16+81=97=9.85\Rightarrow AB = \sqrt {16 + 81} = \sqrt {97} = 9.85
Similarly,
BC=(2+5)2+(42)2BC = \sqrt {{{\left( {2 + 5} \right)}^2} + {{\left( { - 4 - 2} \right)}^2}}
BC=49+36=85=9.2\Rightarrow BC = \sqrt {49 + 36} = \sqrt {85} = 9.2
Similarly,
AC=(56)2+(25)2AC = \sqrt {{{\left( { - 5 - 6} \right)}^2} + {{\left( {2 - 5} \right)}^2}}
AC=121+9=130=11.4\Rightarrow AC = \sqrt {121 + 9} = \sqrt {130} = 11.4

Similarly,
AD=(36)2+(65)2AD = \sqrt {{{\left( { - 3 - 6} \right)}^2} + {{\left( {6 - 5} \right)}^2}}
AD=81+1=82=9.05\Rightarrow AD = \sqrt {81 + 1} = \sqrt {82} = 9.05
And
CD=(3+5)2+(62)2CD = \sqrt {{{\left( { - 3 + 5} \right)}^2} + {{\left( {6 - 2} \right)}^2}}
CD=4+16=20=4.47\Rightarrow CD = \sqrt {4 + 16} = \sqrt {20} = 4.47
Now we know that
Area of triangle ==
s(sa)(sb)(sc)\sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} where s=a+b+c2s = \dfrac{{a + b + c}}{2} and a,b,ca,b,c are the sides of the triangle.
Thus,
Let triangle be ABC\vartriangle ABC , where AB=9.85, BC=9.2, AC=11.4AB = 9.85,{\text{ }}BC = 9.2,{\text{ A}}C = 11.4
Therefore,
s=9.85+9.2+11.42s = \dfrac{{9.85 + 9.2 + 11.4}}{2}
s=30.452=15.225\Rightarrow s = \dfrac{{30.45}}{2} = 15.225

Now Area of triangle == s(sa)(sb)(sc)\sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)}
Therefore, area of triangle ABC\vartriangle ABC =15.225(15.2259.85)(15.2259.2)(15.22511.4)= \sqrt {15.225\left( {15.225 - 9.85} \right)\left( {15.225 - 9.2} \right)\left( {15.225 - 11.4} \right)}
Area of triangle ABC=15.225(5.375)(6.025)(3.825)\vartriangle ABC = \sqrt {15.225\left( {5.375} \right)\left( {6.025} \right)\left( {3.825} \right)}
On solving, we get
Area of triangle ABC=1885.92=43.4\vartriangle ABC = \sqrt {1885.92} = 43.4
Now let triangle be ADC\vartriangle ADC , where AD=9.05, CD=4.47, AC=11.4AD = 9.05,{\text{ }}CD = 4.47,{\text{ A}}C = 11.4
Therefore,
s=9.05+4.47+11.42s = \dfrac{{9.05 + 4.47 + 11.4}}{2}
s=24.922=12.46\Rightarrow s = \dfrac{{24.92}}{2} = 12.46

Now Area of triangle == s(sa)(sb)(sc)\sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)}
Therefore, area of triangle ADC\vartriangle ADC =12.46(12.469.05)(12.464.47)(12.4611.4)= \sqrt {12.46\left( {12.46 - 9.05} \right)\left( {12.46 - 4.47} \right)\left( {12.46 - 11.4} \right)}
Area of triangle ADC=12.46(3.41)(7.99)(1.06)\vartriangle ADC = \sqrt {12.46\left( {3.41} \right)\left( {7.99} \right)\left( {1.06} \right)}
On solving, we get
Area of triangle ADC=359.85=18.96\vartriangle ADC = \sqrt {359.85} = 18.96
Hence, the area of quadrilateral ABCDABCD == Area of ABC\vartriangle ABC ++ Area of ADC\vartriangle ADC
area of quadrilateral ABCDABCD =43.4+18.96 = 43.4 + 18.96
\Rightarrow area of quadrilateral ABCDABCD =62.36 = 62.36
Now we know that the perimeter of the quadrilateral is the sum of all the sides of the quadrilateral i.e., perimeter of quadrilateral ABCDABCD =AB+BC+CD+AD = AB + BC + CD + AD
We have all the values, so we get the perimeter as
(9.85+9.2+4.47+9.05)=32.57\left( {9.85 + 9.2 + 4.47 + 9.05} \right) = 32.57

Hence, we get the area of the quadrilateral as 62.36 sq.units62.36{\text{ }}sq.units and the perimeter as 32.57units32.57\,units.

Note: In this type of question, sometimes it's difficult to solve the area of the triangles as the calculation is complex, so, there is one other formula to find the area of the triangle.
Area=12[x1(y2y3)+x2(y3y1)+x3(y1y2)]Area = \dfrac{1}{2}|\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]
where (x1,y1),(x2,y2),(x3,y3)\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right),\left( {{x_3},{y_3}} \right) are the coordinates of the triangle. Also remember while solving this type of problem, always try to find the area of the quadrilateral by dividing it into two triangles by joining any one of the diagonals. Also try to avoid calculation mistakes.