Solveeit Logo

Question

Question: What is the angle between the straight lines \(\left( {{m^2} - mn} \right)y = \left( {mn + {n^2}} \r...

What is the angle between the straight lines (m2mn)y=(mn+n2)x+n3\left( {{m^2} - mn} \right)y = \left( {mn + {n^2}} \right)x + {n^3} and (mn+m2)y=(mnn2)x+m3\left( {mn + {m^2}} \right)y = \left( {mn - {n^2}} \right)x + {m^3} where, m>n?

Explanation

Solution

Hint – First, we will find the slopes of both the equations and then put it in the formula to find the angle between them. Then by putting the values of slopes into the formula and further solving it we will get the value of θ\theta i.e. angle between these two lines.

Complete step-by-step answer:
From the given equations
(m2mn)y=(mn+n2)x+n3\left( {{m^2} - mn} \right)y = \left( {mn + {n^2}} \right)x + {n^3} and (mn+m2)y=(mnn2)x+m3\left( {mn + {m^2}} \right)y = \left( {mn - {n^2}} \right)x + {m^3}
We can write these equations as in slope – intercept form i.e. y=mx+b, where m is the slope i.e. coefficient of x.
y=(mn+n2)x+n3(m2mn)=(mn+n2)x(m2mn)+n3(m2mn)y = \dfrac{{\left( {mn + {n^2}} \right)x + {n^3}}}{{\left( {{m^2} - mn} \right)}} = \dfrac{{\left( {mn + {n^2}} \right)x}}{{\left( {{m^2} - mn} \right)}} + \dfrac{{{n^3}}}{{\left( {{m^2} - mn} \right)}} and,
y=(mnn2)x+m3(mn+m2)=(mnn2)x(mn+m2)+m3(mn+m2)y = \dfrac{{\left( {mn - {n^2}} \right)x + {m^3}}}{{\left( {mn + {m^2}} \right)}} = \dfrac{{\left( {mn - {n^2}} \right)x}}{{\left( {mn + {m^2}} \right)}} + \dfrac{{{m^3}}}{{\left( {mn + {m^2}} \right)}}
First we will find the slopes of these given lines by comparing them with the slope – intercept form.
So, the slopes are:
m1=mn+n2m2mn{m_1} = \dfrac{{mn + {n^2}}}{{{m^2} - mn}} and m2=mnn2mn+m2{m_2} = \dfrac{{mn - {n^2}}}{{mn + {m^2}}}
Let θ\theta be the angle between straight lines with slopes m1{m_1} and m2{m_2} is given by following formula:
tanθ=m2m11+m2m1\tan \theta = \left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_2}{m_1}}}} \right|
tanθ=mnn2mn+m2mn+n2m2mn1+(mnn2mn+m2)(mn+n2m2mn)\Rightarrow \tan \theta = \left| {\dfrac{{\dfrac{{mn - {n^2}}}{{mn + {m^2}}} - \dfrac{{mn + {n^2}}}{{{m^2} - mn}}}}{{1 + \left( {\dfrac{{mn - {n^2}}}{{mn + {m^2}}}} \right)\left( {\dfrac{{mn + {n^2}}}{{{m^2} - mn}}} \right)}}} \right|
tanθ=(mnn2)(m2mn)(mn+n2)(mn+m2)(m2mn)(mn+m2)1+((mnn2)(mn+n2)(mn+m2)(m2mn)) tanθ=(mnn2)(m2mn)(mn+n2)(mn+m2)(m2mn)(mn+m2)(mn+m2)(m2mn)+(mnn2)(mn+n2)(mn+m2)(m2mn)  \Rightarrow \tan \theta = \left| {\dfrac{{\dfrac{{\left( {mn - {n^2}} \right)\left( {{m^2} - mn} \right) - \left( {mn + {n^2}} \right)\left( {mn + {m^2}} \right)}}{{\left( {{m^2} - mn} \right)\left( {mn + {m^2}} \right)}}}}{{1 + \left( {\dfrac{{\left( {mn - {n^2}} \right)\left( {mn + {n^2}} \right)}}{{\left( {mn + {m^2}} \right)\left( {{m^2} - mn} \right)}}} \right)}}} \right| \\\ \Rightarrow \tan \theta = \left| {\dfrac{{\dfrac{{\left( {mn - {n^2}} \right)\left( {{m^2} - mn} \right) - \left( {mn + {n^2}} \right)\left( {mn + {m^2}} \right)}}{{\left( {{m^2} - mn} \right)\left( {mn + {m^2}} \right)}}}}{{\dfrac{{\left( {mn + {m^2}} \right)\left( {{m^2} - mn} \right) + \left( {mn - {n^2}} \right)\left( {mn + {n^2}} \right)}}{{\left( {mn + {m^2}} \right)\left( {{m^2} - mn} \right)}}}}} \right| \\\
Now, on simplification we get,
tanθ=m3nm2n2m2n2+mn3m2n2m3nmn3m2n2m3nm2n2+m4m3n+m2n2+mn3mn3n4\Rightarrow \tan \theta = \left| {\dfrac{{{m^3}n - {m^2}{n^2} - {m^2}{n^2} + m{n^3} - {m^2}{n^2} - {m^3}n - m{n^3} - {m^2}{n^2}}}{{{m^3}n - {m^2}{n^2} + {m^4} - {m^3}n + {m^2}{n^2} + m{n^3} - m{n^3} - {n^4}}}} \right|
By cancelling out the same terms we get,
tanθ=4m2n2m4n4 θ=tan1(4m2n2m4n4)  \Rightarrow \tan \theta = \dfrac{{4{m^2}{n^2}}}{{{m^4} - {n^4}}} \\\ \Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{{4{m^2}{n^2}}}{{{m^4} - {n^4}}}} \right) \\\
Hence, the angle between the line is tan1(4m2n2m4n4){\tan ^{ - 1}}\left( {\dfrac{{4{m^2}{n^2}}}{{{m^4} - {n^4}}}} \right)

Note – As you can see while solving for tanθ\tan \theta student must pay attention while simplifying it as it is the most error prone step as it contains a number of terms. You have to follow this particular method only as you have to use the concept and formulas of slope-intercept form and angle between two lines.