Solveeit Logo

Question

Question: What is the activation energy for a reaction if its rate doubles when the temperature is raised from...

What is the activation energy for a reaction if its rate doubles when the temperature is raised from 20°C to 35°C? (R=8.314Jmol1K1log2=0.3010R = 8.314 \text{Jmol}^{-1}\text{K}^{-1} \log 2 = 0.3010)

A

342kJmol1^{-1}

B

269kJmol1^{-1}

C

34.7kJmol1^{-1}

D

15.1kJmol1^{-1}

Answer

The correct answer is 34.7kJmol1^{-1}

Explanation

Solution

The relationship between the rate constant (kk) and temperature (TT) is given by the Arrhenius equation. For two different temperatures T1T_1 and T2T_2, the rate constants k1k_1 and k2k_2 are related by the integrated Arrhenius equation:

ln(k2k1)=EaR(1T11T2)=EaR(T2T1T1T2)\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right) = \frac{E_a}{R}\left(\frac{T_2 - T_1}{T_1 T_2}\right)

where EaE_a is the activation energy and RR is the ideal gas constant.

Given:

T1=20CT_1 = 20^\circ\text{C} T2=35CT_2 = 35^\circ\text{C}

The rate doubles when the temperature is raised from 20°C to 35°C, which means k2=2k1k_2 = 2k_1, so k2k1=2\frac{k_2}{k_1} = 2.

R=8.314 Jmol1K1R = 8.314 \text{ Jmol}^{-1}\text{K}^{-1} log2=0.3010\log 2 = 0.3010

First, convert the temperatures from Celsius to Kelvin:

T1=20+273.15=293.15 KT_1 = 20 + 273.15 = 293.15 \text{ K} T2=35+273.15=308.15 KT_2 = 35 + 273.15 = 308.15 \text{ K}

Now, calculate ln(k2k1)\ln\left(\frac{k_2}{k_1}\right):

ln(k2k1)=ln(2)\ln\left(\frac{k_2}{k_1}\right) = \ln(2)

Using the relationship ln(x)=2.303log10(x)\ln(x) = 2.303 \log_{10}(x):

ln(2)=2.303×log10(2)=2.303×0.3010=0.693023\ln(2) = 2.303 \times \log_{10}(2) = 2.303 \times 0.3010 = 0.693023

Now, calculate the temperature difference and the product of temperatures:

T2T1=308.15293.15=15 KT_2 - T_1 = 308.15 - 293.15 = 15 \text{ K} T1T2=293.15×308.15=90400.9725 K2T_1 T_2 = 293.15 \times 308.15 = 90400.9725 \text{ K}^2

Substitute these values into the integrated Arrhenius equation:

0.693023=Ea8.314 Jmol1K1(15 K90400.9725 K2)0.693023 = \frac{E_a}{8.314 \text{ Jmol}^{-1}\text{K}^{-1}}\left(\frac{15 \text{ K}}{90400.9725 \text{ K}^2}\right) 0.693023=Ea8.314×1590400.97250.693023 = \frac{E_a}{8.314} \times \frac{15}{90400.9725}

Solve for EaE_a:

Ea=0.693023×8.314×90400.972515E_a = 0.693023 \times 8.314 \times \frac{90400.9725}{15} Ea=0.693023×8.314×6026.7315E_a = 0.693023 \times 8.314 \times 6026.7315 Ea5.7603×6026.7315E_a \approx 5.7603 \times 6026.7315 Ea34724.8 J/molE_a \approx 34724.8 \text{ J/mol}

To convert the activation energy from joules per mole to kilojoules per mole, divide by 1000:

Ea34724.81000 kJ/molE_a \approx \frac{34724.8}{1000} \text{ kJ/mol} Ea34.7248 kJ/molE_a \approx 34.7248 \text{ kJ/mol}

This value is closest to 34.7 kJ/mol.