Solveeit Logo

Question

Question: What is \[{\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{4}){\text{ + ta}}{{\text{n}}^{ - 1}}(\dfrac{3}{5}...

What is tan1(14) + tan1(35){\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{4}){\text{ + ta}}{{\text{n}}^{ - 1}}(\dfrac{3}{5}) equal to?
A. 0
B. π4\dfrac{\pi }{4}
C. π3\dfrac{\pi }{3}
D. π2\dfrac{\pi }{2}

Explanation

Solution

Hint:- The inverse trigonometry formulas of tan1(){\text{ta}}{{\text{n}}^{ - 1}}\left( {} \right) can be used.

Given,
tan1(14) + tan1(35){\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{4}){\text{ + ta}}{{\text{n}}^{ - 1}}(\dfrac{3}{5}) =? -(1)
We know that , the inverse trigonometry formula of addition of tan1(){\text{ta}}{{\text{n}}^{ - 1}}\left( {} \right) is tan1x + tan1y = tan1(x + y1xy){\text{ta}}{{\text{n}}^{ - 1}}{\text{x + ta}}{{\text{n}}^{ - 1}}{\text{y = ta}}{{\text{n}}^{ - 1}}(\dfrac{{{\text{x + y}}}}{{1 - {\text{xy}}}}) , xy<1 -(2)

Comparing the equation (1) with the equation (2) we get,
X = 14\dfrac{1}{4} and y =35\dfrac{3}{5} .
We need to check whether xy<1 for applying the formula of tan1(){\text{ta}}{{\text{n}}^{ - 1}}\left( {} \right)
xy = (14)(35) = (320)   \Rightarrow {\text{xy = }}\left( {\dfrac{1}{4}} \right)\left( {\dfrac{3}{5}} \right){\text{ = }}\left( {\dfrac{3}{{20}}} \right) \\\ \\\
And,
320<1 xy < 1  \Rightarrow \dfrac{3}{{20}} < 1 \\\ \Rightarrow {\text{xy < 1}} \\\
So, the formula is applicable for a given set of x and y.

Putting the value of x and y in equation (2). We get,
tan114 + tan135 = tan1(14 + 351(14)(35)){\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = ta}}{{\text{n}}^{ - 1}}(\dfrac{{\dfrac{1}{4}{\text{ + }}\dfrac{3}{5}}}{{1 - \left( {\dfrac{1}{4}} \right)\left( {\dfrac{3}{5}} \right)}})

Solving right hand side , we get
tan114 + tan135 = tan1(17201(320)){\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = ta}}{{\text{n}}^{ - 1}}(\dfrac{{\dfrac{{17}}{{20}}}}{{1 - \left( {\dfrac{3}{{20}}} \right)}})
tan114 + tan135 = tan1(17201720){\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{\dfrac{{17}}{{20}}}}{{\dfrac{{17}}{{20}}}}} \right)
tan114 + tan135 = tan11{\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = ta}}{{\text{n}}^{ - 1}}1
tan114 + tan135 = π4{\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{4}{\text{ + ta}}{{\text{n}}^{ - 1}}\dfrac{3}{5}{\text{ = }}\dfrac{\pi }{4}

Hence the value of tan1(14) + tan1(35){\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{4}){\text{ + ta}}{{\text{n}}^{ - 1}}(\dfrac{3}{5}) is π4\dfrac{\pi }{4}. The answer is option B.
Note:- The domain and the range of tan1(){\text{ta}}{{\text{n}}^{ - 1}}\left( {} \right) is R and (π2,π2)\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) respectively. And tan1x + tan1y = tan1(x + y1xy){\text{ta}}{{\text{n}}^{ - 1}}{\text{x + ta}}{{\text{n}}^{ - 1}}{\text{y = ta}}{{\text{n}}^{ - 1}}(\dfrac{{{\text{x + y}}}}{{1 - {\text{xy}}}}) is applicable only when xy <1.