Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

What is tan(cos1x)\tan (\cos^{-1} \, x) equal to ?

A

1x2x\frac{\sqrt{1-x^{2}}}{x}

B

x1+x2\frac{x}{1+x^{2}}

C

1+x2x\frac{\sqrt{1 + x^{2}}}{x}

D

1x2\sqrt{ 1 - x^2}

Answer

1x2x\frac{\sqrt{1-x^{2}}}{x}

Explanation

Solution

Let cos1x=θ\cos^{-1} x = \theta cosθ=xsinθ=1x2\Rightarrow \cos\theta = x \Rightarrow \sin \theta = \sqrt{1-x^{2}} tanθ=1x2x \Rightarrow \tan \theta = \frac{\sqrt{1 - x^{2}}}{x} and θ=cos1x \theta = \cos^{-1} x This can be represented by a triangle with hypotenuse = 1 and sides x and 1x2 \sqrt{1 -x^{2}} . tan(cos1x)=1x2x\Rightarrow \tan\left(\cos^{-1} x \right) = \frac{\sqrt{1-x^{2}}}{x}