Question
Question: What is \(\tan (-{{585}^{\circ }})\) equal to? A. 1 B. -1 C. \(-\sqrt{2}\) D. \(-\sqrt{3}\)...
What is tan(−585∘) equal to?
A. 1
B. -1
C. −2
D. −3
Solution
Hint: We can use negative angle property of tan as given below:
tan(−θ)=−tan(θ) also use the some conversion for angle in standard angles like tan(180∘+θ)=tan(θ) and tan(2nπ+θ)=tan(θ).
Complete step-by-step solution -
And to write 585∘ in standard value which we know we need to use tan(2nπ+θ)=tan(θ)
Given trigonometric ratio is tan(−585∘)
We can use first tan(−θ)=−tan(θ)
⇒tan(−585∘)=−tan(585∘)
Now we can write 585∘ as 585∘=360∘×1+225∘
So we will get
⇒tan(−585∘)=−tan(360∘×1+225∘)
⇒tan(−585∘)=−tan(2π×1+225∘) \left\\{ \because 2\pi ={{360}^{\circ }} \right\\}
⇒tan(−585∘)=−tan(225∘) \left\\{ \because \tan \left( 2n\pi +\theta \right)=\tan (\theta ) \right\\}
⇒tan(−585∘)=−tan(180∘+45∘) \left\\{ \because \tan ({{180}^{\circ }}+\theta )=\tan (\theta ) \right\\}
⇒tan(−585∘)=−tan(45∘)
⇒tan(−585∘)=−1
Hence option B is correct.
Note: In this question, we need to be careful about how to write an angle as a sum of two angles. We always write it in that way from which we can easily convert a given angle in standard angle values. Standard angle values are 0∘,30∘,45∘,60∘,90∘.