Solveeit Logo

Question

Question: What is \(\tan (-{{585}^{\circ }})\) equal to? A. 1 B. -1 C. \(-\sqrt{2}\) D. \(-\sqrt{3}\)...

What is tan(585)\tan (-{{585}^{\circ }}) equal to?
A. 1
B. -1
C. 2-\sqrt{2}
D. 3-\sqrt{3}

Explanation

Solution

Hint: We can use negative angle property of tan as given below:
tan(θ)=tan(θ)\tan (-\theta )=-\tan (\theta ) also use the some conversion for angle in standard angles like tan(180+θ)=tan(θ)\tan ({{180}^{\circ }}+\theta )=\tan (\theta ) and tan(2nπ+θ)=tan(θ)\tan \left( 2n\pi +\theta \right)=\tan (\theta ) .

Complete step-by-step solution -
And to write 585{{585}^{\circ }} in standard value which we know we need to use tan(2nπ+θ)=tan(θ)\tan \left( 2n\pi +\theta \right)=\tan (\theta )
Given trigonometric ratio is tan(585)\tan (-{{585}^{\circ }})
We can use first tan(θ)=tan(θ)\tan (-\theta )=-\tan (\theta )
tan(585)=tan(585)\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{585}^{\circ }})
Now we can write 585{{585}^{\circ }} as 585=360×1+225{{585}^{\circ }}={{360}^{\circ }}\times 1+{{225}^{\circ }}
So we will get
tan(585)=tan(360×1+225)\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{360}^{\circ }}\times 1+{{225}^{\circ }})
tan(585)=tan(2π×1+225)\Rightarrow \tan (-{{585}^{\circ }})=-\tan (2\pi \times 1+{{225}^{\circ }}) \left\\{ \because 2\pi ={{360}^{\circ }} \right\\}
tan(585)=tan(225)\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{225}^{\circ }}) \left\\{ \because \tan \left( 2n\pi +\theta \right)=\tan (\theta ) \right\\}
tan(585)=tan(180+45)\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{180}^{\circ }}+{{45}^{\circ }}) \left\\{ \because \tan ({{180}^{\circ }}+\theta )=\tan (\theta ) \right\\}
tan(585)=tan(45)\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{45}^{\circ }})
tan(585)=1\Rightarrow \tan (-{{585}^{\circ }})=-1
Hence option B is correct.

Note: In this question, we need to be careful about how to write an angle as a sum of two angles. We always write it in that way from which we can easily convert a given angle in standard angle values. Standard angle values are 0,30,45,60,90{{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}.