Solveeit Logo

Question

Question: What is \( \sin \theta \) and \( \cos \theta \) if \( \tan \theta = \dfrac{1}{2} \) and \( \sin \the...

What is sinθ\sin \theta and cosθ\cos \theta if tanθ=12\tan \theta = \dfrac{1}{2} and sinθ>0\sin \theta > 0 ?

Explanation

Solution

Hint : We have to find sinθ\sin \theta and cosθ\cos \theta . Now, we know that tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} , so we can write sinθcosθ=12\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{2} . On simplifying it we will get cosθ=2sinθ\cos \theta = 2\sin \theta . We know the formula sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 and we have the value for cosθ\cos \theta . So, substitute the value of cosθ\cos \theta and find the value of sinθ\sin \theta . After finding the value of sinθ\sin \theta , put it in equation cosθ=2sinθ\cos \theta = 2\sin \theta and you will get the value of cosθ\cos \theta as well.
Formulas used:
tanθ=sinθcosθ\Rightarrow \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
sin2θ+cos2θ=1\Rightarrow {\sin ^2}\theta + {\cos ^2}\theta = 1
tan=OppositeAdjacent=12\Rightarrow \tan = \dfrac{{{\text{Opposite}}}}{{Adjacent}} = \dfrac{1}{2}
sinθ=OppositeHypotenuse\Rightarrow \sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}}
cosθ=AdjacentHypotenuse\Rightarrow \cos \theta = \dfrac{{Adjacent}}{{{\text{Hypotenuse}}}}

Complete step-by-step answer :
In this question, we are given the value of tanθ\tan \theta and we need to find the values of sinθ\sin \theta and cosθ\cos \theta .
tanθ=12\Rightarrow \tan \theta = \dfrac{1}{2} and sinθ>0\sin \theta > 0 - - - - - - - - - - (1)
Now, we know that tanθ\tan \theta is sinθ\sin \theta divided by cosθ\cos \theta . So, we can write equation (1) as sinθ\sin \theta divided by cosθ\cos \theta equal to 12\dfrac{1}{2} . Therefore, equation (1) becomes
sinθcosθ=12\Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{2}
Cross multiply, we get
cosθ=2sinθ\Rightarrow \cos \theta = 2\sin \theta - - - - - - - - - - (2)
Now, we know that the square of sinθ\sin \theta plus the square of cosθ\cos \theta is always equal to 1.
Therefore, sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 - - - - - - - - - (3)
Now, from equation (2) substitute cosθ=2sinθ\cos \theta = 2\sin \theta in equation (3). Therefore, we get
sin2θ+(2sinθ)2=1\Rightarrow {\sin ^2}\theta + {\left( {2\sin \theta } \right)^2} = 1
Open the bracket, we get
sin2θ+4sin2θ=1 5sin2θ=1 sin2θ=15   \Rightarrow {\sin ^2}\theta + 4{\sin ^2}\theta = 1 \\\ \Rightarrow 5{\sin ^2}\theta = 1 \\\ \Rightarrow {\sin ^2}\theta = \dfrac{1}{5} \;
Taking square root on both sides, we get
sinθ=±15\Rightarrow \sin \theta = \pm \sqrt {\dfrac{1}{5}}
But, according to equation (1), sinθ>0\sin \theta > 0 . Hence, the value of sinθ\sin \theta cannot be negative.
sinθ=15=15\Rightarrow \sin \theta = \sqrt {\dfrac{1}{5}} = \dfrac{1}{{\sqrt 5 }}
Rationalizing the above equation, we get
sinθ=15×55=55\Rightarrow \sin \theta = \dfrac{1}{{\sqrt 5 }} \times \dfrac{{\sqrt 5 }}{{\sqrt 5 }} = \dfrac{{\sqrt 5 }}{5}
Now, from equation (2),
cosθ=2sinθ\Rightarrow \cos \theta = 2\sin \theta
Therefore, cosθ=2×55\cos \theta = 2 \times \dfrac{{\sqrt 5 }}{5}
cosθ=255\Rightarrow \cos \theta = \dfrac{{2\sqrt 5 }}{5}
Hence, we have got the values of sinθ\sin \theta and cosθ\cos \theta .

Note : Alternate method to solve this question is by drawing the triangle.
We know that tan=OppositeAdjacent=12\tan = \dfrac{{{\text{Opposite}}}}{{Adjacent}} = \dfrac{1}{2}

Now, in right angled triangle ABCABC , using Pythagoras
AB2+BC2=AC2 12+22=AC2 AC2=5 AC=±5   \Rightarrow A{B^2} + B{C^2} = A{C^2} \\\ \Rightarrow {1^2} + {2^2} = A{C^2} \\\ \Rightarrow A{C^2} = 5 \\\ \Rightarrow AC = \pm \sqrt 5 \;
Now, we know that
sinθ=OppositeHypotenuse=ABAC sinθ=15   \Rightarrow \sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} = \dfrac{{AB}}{{AC}} \\\ \Rightarrow \sin \theta = \dfrac{1}{{\sqrt 5 }} \;
As sinθ>0\sin \theta > 0 .
And, the formula for cosθ\cos \theta is
cosθ=AdjacentHypotenuse=BCAC cosθ=25   \Rightarrow \cos \theta = \dfrac{{Adjacent}}{{{\text{Hypotenuse}}}} = \dfrac{{BC}}{{AC}} \\\ \Rightarrow \cos \theta = \dfrac{2}{{\sqrt 5 }} \;