Solveeit Logo

Question

Question: What is \(\sin \left( \dfrac{\theta }{2} \right)\) in terms of trigonometric functions of a unit \(\...

What is sin(θ2)\sin \left( \dfrac{\theta }{2} \right) in terms of trigonometric functions of a unit θ\theta ?

Explanation

Solution

We first draw a right-angle triangle. We use the concept of trigonometry to find the value as cosθ=ABBC\cos \theta =\dfrac{AB}{BC}. We use the formula of cosθ=12sin2(θ2)\cos \theta =1-2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right) to simplify the problem.
We put the values to find the solution with respect to the value of cosθ=m\cos \theta =m.

Complete step-by-step solution:
The expression of sin(θ2)\sin \left( \dfrac{\theta }{2} \right) is the formula of submultiple angles.
We have to explain the significance of the trigonometric values.
Let us assume for ΔABC\Delta ABC, A=90\angle A={{90}^{\circ }}.

Now let us take B=θ\angle B=\theta .
We know the trigonometric ratio of cos gives the ratio of base and the hypotenuse.
Therefore, cosθ=ABBC\cos \theta =\dfrac{AB}{BC}.
We will use the concept of submultiple to find the value of sin(θ2)\sin \left( \dfrac{\theta }{2} \right).
We have the relation between sin(θ2)\sin \left( \dfrac{\theta }{2} \right) and cosθ\cos \theta which gives cosθ=12sin2(θ2)\cos \theta =1-2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right).
Let us assume that cosθ=m\cos \theta =m.
We get 12sin2(θ2)=m1-2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)=m.
From the relation we find the value of sin(θ2)\sin \left( \dfrac{\theta }{2} \right).
We get 2sin2(θ2)=1m2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)=1-m which gives
2sin2(θ2)=1m [sin(θ2)]2=1m2 \begin{aligned} & 2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)=1-m \\\ & \Rightarrow {{\left[ \sin \left( \dfrac{\theta }{2} \right) \right]}^{2}}=\dfrac{1-m}{2} \\\ \end{aligned}
Now we omit the root square part to find the value of sin(θ2)\sin \left( \dfrac{\theta }{2} \right).
So, [sin(θ2)]2=1m2sin(θ2)=±1m2{{\left[ \sin \left( \dfrac{\theta }{2} \right) \right]}^{2}}=\dfrac{1-m}{2}\Rightarrow \sin \left( \dfrac{\theta }{2} \right)=\pm \sqrt{\dfrac{1-m}{2}}.
The value of the trigonometric function sin(θ2)\sin \left( \dfrac{\theta }{2} \right) is ±1m2\pm \sqrt{\dfrac{1-m}{2}} where cosθ=m\cos \theta =m.

Note: We first need to find the relation where we have all the variables given. The use of the relation sinθ=2sin(θ2)cos(θ2)\sin \theta =2\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right) also gives the same result. In this case we find two ratio values to get to the required solution.