Solveeit Logo

Question

Question: What is \( {{\sin }^{-1}}x+{{\sin }^{-1}}y \) ?...

What is sin1x+sin1y{{\sin }^{-1}}x+{{\sin }^{-1}}y ?

Explanation

Solution

Hint : We first assume variables for the given terms sin1x{{\sin }^{-1}}x and sin1y{{\sin }^{-1}}y . We take trigonometric ratio of sine on both sides of a+b=pa+b=p . We use the formula of sin(a+b)=sinacosb+cosasinb\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b . At the end we take inverse value to find the value of sin1x+sin1y{{\sin }^{-1}}x+{{\sin }^{-1}}y .

Complete step-by-step answer :
Let sin1x=a{{\sin }^{-1}}x=a and sin1y=b{{\sin }^{-1}}y=b . From the inverse law we get sina=x\sin a=x and sinb=y\sin b=y .
Therefore, we need to find the value of sin1x+sin1y=a+b{{\sin }^{-1}}x+{{\sin }^{-1}}y=a+b . We assume a+b=pa+b=p .
We take trigonometric ratio of sine on both sides of a+b=pa+b=p .
So, sin(a+b)=sinp\sin \left( a+b \right)=\sin p .
We now use the theorem of sin(x+y)=sinxcosy+cosxsiny\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y .
Placing the values x=a,y=bx=a,y=b , we get sin(a+b)=sinacosb+cosasinb\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b
From sina=x\sin a=x and sinb=y\sin b=y , we find the values of cosa\cos a and cosb\cos b .
So, we get cosa=1sin2a=1x2\cos a=\sqrt{1-{{\sin }^{2}}a}=\sqrt{1-{{x}^{2}}} and cosb=1sin2b=1y2\cos b=\sqrt{1-{{\sin }^{2}}b}=\sqrt{1-{{y}^{2}}} .
We place the values and get sinp=sinacosb+cosasinb=x1y2+y1x2\sin p=\sin a\cos b+\cos a\sin b=x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} .
Now, we take the inverse of sin to get the value of pp .
We get p=sin1(x1y2+y1x2)p={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right) .
Therefore, we get p=sin1x+sin1y=sin1(x1y2+y1x2)p={{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right) .
So, the correct answer is “ p=sin1x+sin1y=sin1(x1y2+y1x2)p={{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right) ”.

Note : We are only taking the positive value for the cosa=1x2\cos a=\sqrt{1-{{x}^{2}}} and cosb=1y2\cos b=\sqrt{1-{{y}^{2}}} . We use them using the formula of sin2α+cos2α=1{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1 .