Solveeit Logo

Question

Question: What is \[\sec 2x – tan 2x\] in terms of tan ?...

What is sec2xtan2x\sec 2x – tan 2x in terms of tan ?

Explanation

Solution

In this question, we need to convert sec2xtan2x\sec 2x -\tan 2x in the terms of tangent . To convert sec2xtan2x\sec 2x-\tan 2x in terms of tangent expression , we will use the Trigonometric identities and functions. The basic trigonometric functions are sine , cosine and tangent. In trigonometry , the tangent function is used to find the slope of a line. Also with the help of algebraic formulae, we can easily convert in the terms of tangent.
Identity used :
sin2θ + cos2θ=1sin^{2}\theta\ + \ cos^{2}\theta = 1

Formula used :
1. cos 2θ =cos2θsin2θ\cos\ 2\theta\ = \cos^{2}\theta- \sin^{2}\theta
2. sin 2θ = 2 sin θ cos θ\sin\ 2\theta\ = \ 2\ sin\ \theta\ cos\ \theta
3. tanA tanB1 +tanA×tanB=tan(AB)\dfrac{\tan A\ - \tan B}{1\ + \tan A \times \tan B} = \tan\left( A - B \right)
Algebraic formulae used :
1. a2+b22ab=(a+b)2a^{2} + b^{2} – 2ab = \left( a + b \right)^{2}
2. a2b2=(a+b)(ab)a^{2} – b^{2} = \left( a + b \right)\left( a – b \right)

Complete step-by-step solution:
Given,
sec2xtan2x\sec 2x – \tan 2x
We need to convert the given expression in terms of tangent .
We know that sec θ=1cos θ\sec\ \theta = \dfrac{1}{cos\ \theta } and also tan θ=sin θcos θtan\ \theta = \dfrac{sin\ \theta }{cos\ \theta}
Thus we get,
sec2xtan2x=(1cos2x)(sin2xcos2x)\sec 2x – \tan 2x = \left( \dfrac{1}{\cos 2x} \right)\left( \dfrac{\sin 2x}{\cos 2x} \right)
(1sin2x)cos2x\Rightarrow\dfrac{\left( 1 – \sin 2x \right)}{\cos 2x}
By applying the formula,
We get,
(12sinxcosx)cos2xsin2x \Rightarrow\dfrac{\left( 1 – 2\sin x \cos x \right)}{\cos^{2}x - \sin^{2}x}\
By using the identity , We can substitute
sin2x +cos2x \sin^{2}x\ + \cos^{2}x\ in the place of 11
(sin2x +cos2x 2sinx2cosx)cos2xsin2x \Rightarrow\dfrac{\left(\sin^{2}x\ + \cos^{2}x\ - 2\sin x 2\cos x \right)}{\cos^{2}x-\sin^{2}x}\
We know that a2+b22ab=(a+b)2a^{2} + b^{2} – 2ab = \left( a + b \right)^{2}
Thus we can write
sin2x+cos2x2sinxcosx sin^{2}x + cos^{2}x – 2sinx\cos{x\ } as (cos x sin x)2\left( cos\ x - \ sin\ x \right)^{2} (since 0 < x <π40\ < \ x\ < \dfrac{\pi}{4} then sin x < cos xsin\ x\ < \ cos\ x )
(cos x sin x)2 cos2xsin2x \Rightarrow\dfrac{\left( cos\ x - \ sin\ x \right)^{2}}{\ cos^{2}x- sin^{2}x}\
We know that
a2b2=(a+b)(ab)a^{2} – b^{2} = \left( a + b \right)\left( a – b \right)
Thus we can write
cos2xsin2x=(cos x+ sin x)(cos x sin x){\cos^{2}x – sin}^{2}x = \left( cos\ x + \ sin\ x \right)\left( cos\ x - \ sin\ x \right)
(cos x sin x)2(cosx+sin x)(cos x sin x) \Rightarrow\dfrac{\left( cos\ x - \ sin\ x \right)^{2}}{\left( \cos{x + \sin\ }x \right)\left( cos\ x - \ sin\ x \right)}\
By simplifying,
We get,
cos x  sin xcos x + sin x\Rightarrow\dfrac{cos\ x\ -\ sin\ x}{cos\ x\ + \ sin\ x}
By taking cosx\cos x outside from both numerator and denominator,
We get,
cos x[1  (sinxcos x)](cos x[1 + (sinxcos x)])\Rightarrow\dfrac{{cos\ x}\left\lbrack 1\ - \ \left( \dfrac{\sin x}{{cos\ x}} \right) \right\rbrack}{\left({cos\ x}\left\lbrack 1\ + \ \left( \dfrac{{sinx}}{{cos\ x}} \right) \right\rbrack \right)}
On simplifying,
We get,
1 tanx1 +tanx\Rightarrow\dfrac{1\ - \tan x}{1\ + \tan x}
We can write this expression as
1 tanx1 +1×tanx\Rightarrow\dfrac{1\ - \tan x}{1\ + 1 \times \tan x} in order to bring the expression in the form of tan(A+B)tan(A + B) formula.
We know that the value of tan(π4)\tan\left( \dfrac{\pi}{4} \right) is 11
tan(π4) tanx1 +tan(π4)×tanx\Rightarrow\dfrac{\tan\left( \dfrac{\pi}{4} \right)\ -\tan x}{1\ + \tan\left( \dfrac{\pi}{4} \right) \times \tan x}
We know
tan A tanB1 +tanA×tanB=tan(AB)\dfrac{tan\ A\ - \tan B}{1\ + \tan A \times \tan B} = \tan\left( A - B \right)
By applying the formula we get ,
tan(π4)tanx1 +tan(π4)×tanx=tan((π4)x)\dfrac{\tan\left( \dfrac{\pi}{4} \right)- \tan x}{1\ + tan\left( \dfrac{\pi}{4} \right) \times \tan x} = tan\left( \left( \dfrac{\pi}{4} \right) - x \right)
Thus we get,
sec2xtan2x=tan((π4)x)\sec 2x – \tan 2x = tan\left( \left( \dfrac{\pi}{4} \right) - x \right)
Therefore we have converted the given expression in terms of tangent.
Final answer :
sec2xtan2x\sec 2x – \tan 2x in terms of tan is tan((π4)x)\tan\left( \left( \dfrac{\pi}{4} \right) - x \right)

Note: The concept used to solve the given problem is trigonometric identities and ratios. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. The common technique used in this problem is the use of algebraic formulae with the use of trigonometric functions.