Solveeit Logo

Question

Question: What is represented by the equation \({x^3} + {y^3} + \left( {x + y} \right)\left( {xy - ax - ay} \r...

What is represented by the equation x3+y3+(x+y)(xyaxay)=0{x^3} + {y^3} + \left( {x + y} \right)\left( {xy - ax - ay} \right) = 0 ?

Explanation

Solution

Hint- Here, we will be using the formula x3+y3=(x+y)(x2+y2xy){x^3} + {y^3} = \left( {x + y} \right)\left( {{x^2} + {y^2} - xy} \right) in the given equation and then we will compare the equations obtained with the general equation of straight line y=mx+cy = mx + c and that of circle (xx1)2+(yy1)2=r2{\left( {x - {x_1}} \right)^2} + {\left( {y - {y_1}} \right)^2} = {r^2}.

Complete step-by-step solution -
The given equation is x3+y3+(x+y)(xyaxay)=0{x^3} + {y^3} + \left( {x + y} \right)\left( {xy - ax - ay} \right) = 0
Using the formula x3+y3=(x+y)(x2+y2xy){x^3} + {y^3} = \left( {x + y} \right)\left( {{x^2} + {y^2} - xy} \right) , we get
(x+y)(x2+y2xy)+(x+y)(xyaxay)=0 (x+y)[(x2+y2xy)+(xyaxay)]=0 (x+y)[x2+y2axay]=0  \Rightarrow \left( {x + y} \right)\left( {{x^2} + {y^2} - xy} \right) + \left( {x + y} \right)\left( {xy - ax - ay} \right) = 0 \\\ \Rightarrow \left( {x + y} \right)\left[ {\left( {{x^2} + {y^2} - xy} \right) + \left( {xy - ax - ay} \right)} \right] = 0 \\\ \Rightarrow \left( {x + y} \right)\left[ {{x^2} + {y^2} - ax - ay} \right] = 0 \\\
From above equation we can say that either of the two terms on the LHS is equal to 0
i.e., either (x+y)=0\left( {x + y} \right) = 0 or [x2+y2axay]=0\left[ {{x^2} + {y^2} - ax - ay} \right] = 0
y=x (1)\Rightarrow y = - x{\text{ }} \to {\text{(1)}} or

x2ax+(a2)2+y2ay+(a2)2(a2)2(a2)2=0 (xa2)2+(ya2)22(a2)2=0 (xa2)2+(ya2)2=2(a2)2 (xa2)2+(ya2)2=(a22)2 (xa2)2+(ya2)2=(a2)2 (2)  {x^2} - ax + {\left( {\dfrac{a}{2}} \right)^2} + {y^2} - ay + {\left( {\dfrac{a}{2}} \right)^2} - {\left( {\dfrac{a}{2}} \right)^2} - {\left( {\dfrac{a}{2}} \right)^2} = 0 \\\ \Rightarrow {\left( {x - \dfrac{a}{2}} \right)^2} + {\left( {y - \dfrac{a}{2}} \right)^2} - 2{\left( {\dfrac{a}{2}} \right)^2} = 0 \\\ \Rightarrow {\left( {x - \dfrac{a}{2}} \right)^2} + {\left( {y - \dfrac{a}{2}} \right)^2} = 2{\left( {\dfrac{a}{2}} \right)^2} \\\ \Rightarrow {\left( {x - \dfrac{a}{2}} \right)^2} + {\left( {y - \dfrac{a}{2}} \right)^2} = {\left( {\dfrac{{a\sqrt 2 }}{2}} \right)^2} \\\ \Rightarrow {\left( {x - \dfrac{a}{2}} \right)^2} + {\left( {y - \dfrac{a}{2}} \right)^2} = {\left( {\dfrac{a}{{\sqrt 2 }}} \right)^2}{\text{ }} \to {\text{(2)}} \\\

As we know that general equation of any straight line is y=mx+c (3)y = mx + c{\text{ }} \to {\text{(3)}}, where m is the slope of the straight line and c is the y-intercept of the straight line.
Also, we know that the equation of any circle with centre coordinate as (x1,y1)\left( {{x_1},{y_1}} \right) and radius of the circle as r is given by (xx1)2+(yy1)2=r2 (4){\left( {x - {x_1}} \right)^2} + {\left( {y - {y_1}} \right)^2} = {r^2}{\text{ }} \to {\text{(4)}}
Now on comparing equations (1) and (3), we can say that y=xy = - x is the equation of a straight line passing through origin with a slope of -1.
Also on comparing equations (2) and (4), we can say that (xa2)2+(ya2)2=(a2)2{\left( {x - \dfrac{a}{2}} \right)^2} + {\left( {y - \dfrac{a}{2}} \right)^2} = {\left( {\dfrac{a}{{\sqrt 2 }}} \right)^2} is the equation of a circle with centre coordinate as (a2,a2)\left( {\dfrac{a}{2},\dfrac{a}{2}} \right) and radius of a2\dfrac{a}{{\sqrt 2 }}.
Therefore, the given equation x3+y3+(x+y)(xyaxay)=0{x^3} + {y^3} + \left( {x + y} \right)\left( {xy - ax - ay} \right) = 0 represents a circle and a straight line.

Note- In these types of problems, we simplify the given equation in such a way that the simplified equation or equations refer to a general form of equation of some known line or curve. Here, the given combined equation resembles the general equation of a line and a circle.