Solveeit Logo

Question

Question: What is represented by the equation \(\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0\...

What is represented by the equation (rcosθa)(racosθ)=0\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0?

Explanation

Solution

Hint: Put rcosθ=x and rsinθ=yr\cos \theta =x\ and\ r\sin \theta =y. Square x and y. You have to prove that x = a, represents a line and prove that the equation also represents the equation of the circle.

Complete step-by-step answer:
Given the equation (rcosθa)(racosθ)=0\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0…………………. (1)
Now let us consider rcosθ=x and rsinθ=yr\cos \theta =x\ and\ r\sin \theta =y.
Now squaring and adding x and y, we get
x2+y2=(rcosθ)2+(rsinθ)2 x2+y2=r2[cos2θ+sin2θ] \begin{aligned} & {{x}^{2}}+{{y}^{2}}={{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}} \\\ & \Rightarrow {{x}^{2}}+{{y}^{2}}={{r}^{2}}\left[ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right] \\\ \end{aligned}
We know,
sin2θ+cos2θ=1 x2+y2=r2...............(2) r=x2+y2 \begin{aligned} & {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\\ & \therefore {{x}^{2}}+{{y}^{2}}={{r}^{2}}...............\left( 2 \right) \\\ & \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\\ \end{aligned}
Now take (rcosθa)(racosθ)=0\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0
Take, (rcosθa)=0\left( r\cos \theta -a \right)=0
rcosθ=a\Rightarrow r\cos \theta =a
We know rcosθ=xr\cos \theta =x.
x=a\therefore x=a, which represents a vertical straight line.
Take, (racosθ)=0\left( r-a\cos \theta \right)=0.
r=acosθ\therefore r=a\cos \theta
Now multiply r on LHS and RHS.
r2=arcosθ\Rightarrow {{r}^{2}}=ar\cos \theta
We know rcosθ=xr\cos \theta =x.
r2=ax\Rightarrow {{r}^{2}}=ax
Now substitute r2{{r}^{2}} on equation (2).
x2+y2=r2 x2+y2=ax x2+y2ax=0 (x2ax)+y2=0 \begin{aligned} & {{x}^{2}}+{{y}^{2}}={{r}^{2}} \\\ & {{x}^{2}}+{{y}^{2}}=ax \\\ & \Rightarrow {{x}^{2}}+{{y}^{2}}-ax=0 \\\ & \left( {{x}^{2}}-ax \right)+{{y}^{2}}=0 \\\ \end{aligned}
Now this represents the equation of a circle.
Add (a2)2{{\left( \dfrac{a}{2} \right)}^{2}} with (x2ax)\left( {{x}^{2}}-ax \right) and subtract (a2)2{{\left( \dfrac{a}{2} \right)}^{2}}.
x2ax+(a2)2+y2(a2)2=0 (xa2)2+y2=(a2)2 \begin{aligned} & \Rightarrow {{x}^{2}}-ax+{{\left( \dfrac{a}{2} \right)}^{2}}+{{y}^{2}}{{\left( \dfrac{a}{2} \right)}^{2}}=0 \\\ & \Rightarrow {{\left( x-\dfrac{a}{2} \right)}^{2}}+{{y}^{2}}={{\left( \dfrac{a}{2} \right)}^{2}} \\\ \end{aligned}
This is of the form of a circle with centre (a2,0)\left( \dfrac{a}{2},0 \right) and radius a2\dfrac{a}{2}.
Thus, the combined equation represents a circle and a straight line.
x=a\therefore x=a represents a straight line
and (xa2)2+y2=(a2)2{{\left( x-\dfrac{a}{2} \right)}^{2}}+{{y}^{2}}={{\left( \dfrac{a}{2} \right)}^{2}}represents equation of a circle.

Note: Take rcosθ=x and rsinθ=yr\cos \theta =x\ and\ r\sin \theta =y to get the required results. In the question ‘r’ represents the radius of the circle. If you consider x=acosθx=a\cos \theta won’t provide desirable results.