Solveeit Logo

Question

Question: What is meant by half-power point frequencies? Obtain an expression for bandwidth in a LCR series ci...

What is meant by half-power point frequencies? Obtain an expression for bandwidth in a LCR series circuit. Show half power point frequencies in a curve between alternating current and frequency.

Explanation

Solution

Bandwidth is the difference in the half power frequencies. To obtain an expression for bandwidth, find the values of the half power frequencies. Find the current when the power is half of the maximum in terms of the maximum current. Use V=imaxRV={{i}_{\max }}R and Z2=R2+(2πfL12πfC)2{{Z}^{2}}={{R}^{2}}+{{\left( 2\pi fL-\dfrac{1}{2\pi fC} \right)}^{2}}.

Formula used:
V=imaxRV={{i}_{\max }}R
Z2=R2+(2πfL12πfC)2{{Z}^{2}}={{R}^{2}}+{{\left( 2\pi fL-\dfrac{1}{2\pi fC} \right)}^{2}}

Complete answer:
Half power points frequencies for a given LCR are the frequencies for which the power in the circuit is half of the maximum power in the circuit.
The current in the circuit at maximum power is also maximum. Let it be imax{{i}_{max}}.
Maximum current is obtained at resonance. At resonance, the frequency of the circuit is called resonance frequency (f0{{f}_{0}}).
Every circuit has two half power frequencies f1{{f}_{1}} and f2{{f}_{2}}.
The impedance of the circuit is Z=R.
Therefore, at resonanceV=imaxRV={{i}_{\max }}R.
imax=VR\Rightarrow {{i}_{\max }}=\dfrac{V}{R} …. (i).
And the power is Pmax=imax2R{{P}_{max}}=i_{\max }^{2}R
At the half frequencies, power of the circuit is P=Pmax2=imax2R2=(imax2)2RP=\dfrac{{{P}_{max}}}{2}=\dfrac{i_{\max }^{2}R}{2}={{\left( \dfrac{{{i}_{\max }}}{\sqrt{2}} \right)}^{2}}R.
This means that the current in the circuit at half power frequencies is imax2\dfrac{{{i}_{\max }}}{\sqrt{2}}.
Then, V=imax2ZV=\dfrac{{{i}_{\max }}}{\sqrt{2}}Z.
Substitute the value of imax{{i}_{max}} from (i).
V=(VR)2Z\Rightarrow V=\dfrac{\left( \dfrac{V}{R} \right)}{\sqrt{2}}Z
2R=Z\Rightarrow \sqrt{2}R=Z
2R2=Z2\Rightarrow 2{{R}^{2}}={{Z}^{2}}
But, Z2=R2+(2πfL12πfC)2{{Z}^{2}}={{R}^{2}}+{{\left( 2\pi fL-\dfrac{1}{2\pi fC} \right)}^{2}}
Therefore,
2R2=R2+(2πfL12πfC)2\Rightarrow 2{{R}^{2}}={{R}^{2}}+{{\left( 2\pi fL-\dfrac{1}{2\pi fC} \right)}^{2}}
R2=(2πfL12πfC)2\Rightarrow {{R}^{2}}={{\left( 2\pi fL-\dfrac{1}{2\pi fC} \right)}^{2}}
R=±(2πfL12πfC)\Rightarrow R=\pm \left( 2\pi fL-\dfrac{1}{2\pi fC} \right)
This proves that there are two values of half power frequencies.
Therefore,
R=2πf1L12πf1CR=2\pi {{f}_{1}}L-\dfrac{1}{2\pi {{f}_{1}}C} or R=12πf2C2πf2LR=\dfrac{1}{2\pi {{f}_{2}}C}-2\pi {{f}_{2}}L.
R=4π2f12LC12πf1C\Rightarrow R=\dfrac{4{{\pi }^{2}}f_{1}^{2}LC-1}{2\pi {{f}_{1}}C}
2πf1CR=4π2f12LC1\Rightarrow 2\pi {{f}_{1}}CR=4{{\pi }^{2}}f_{1}^{2}LC-1 ….. (iii).
And
R=14π2f22LC2πf2C\Rightarrow R=\dfrac{1-4{{\pi }^{2}}f_{2}^{2}LC}{2\pi {{f}_{2}}C}
2πf2CR=14π2f22LC\Rightarrow 2\pi {{f}_{2}}CR=1-4{{\pi }^{2}}f_{2}^{2}LC ….. (iv).
Add (iii) and (iv).
2πf1CR+2πf2CR=4π2f12LC1+14π2f22LC\Rightarrow 2\pi {{f}_{1}}CR+2\pi {{f}_{2}}CR=4{{\pi }^{2}}f_{1}^{2}LC-1+1-4{{\pi }^{2}}f_{2}^{2}LC
(f1+f2)R=2π(f12f22)L\Rightarrow \left( {{f}_{1}}+{{f}_{2}} \right)R=2\pi \left( f_{1}^{2}-f_{2}^{2} \right)L
(f1+f2)R=2π(f1+f2)(f1f2)L\Rightarrow \left( {{f}_{1}}+{{f}_{2}} \right)R=2\pi \left( {{f}_{1}}+{{f}_{2}} \right)\left( {{f}_{1}}-{{f}_{2}} \right)L
(f1f2)=R2πL\Rightarrow \left( {{f}_{1}}-{{f}_{2}} \right)=\dfrac{R}{2\pi L}.
The difference in the half power frequencies i.e. (f1f2)\left( {{f}_{1}}-{{f}_{2}} \right), is called bandwidth.
Therefore, we found an expression for the bandwidth.
The curve of alternating current with respect to the frequency of the source is shown below.

Note:
The value of bandwidth can also be found if we know the expression for the quality factor (Q) of a given circuit. The quality factor is defined as Q=f0BWQ=\dfrac{{{f}_{0}}}{BW}, f0{{f}_{0}} is the resonance frequency of the LCR circuit and BW is the bandwidth of the circuit.
The quality factor is also given as Q=2πf0LRQ=\dfrac{2\pi {{f}_{0}}L}{R}.
Q=f0BW=2πf0LR\Rightarrow Q=\dfrac{{{f}_{0}}}{BW}=\dfrac{2\pi {{f}_{0}}L}{R}
1BW=2πLR\Rightarrow \dfrac{1}{BW}=\dfrac{2\pi L}{R}
BW=R2πL\Rightarrow BW=\dfrac{R}{2\pi L}.