Solveeit Logo

Question

Question: What is \[\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{n}\left( {\sin \left( {\dfrac{\pi }{n}} \...

What is limn1n(sin(πn)+sin(2πn)+..........+sin(2nπn))\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{n}\left( {\sin \left( {\dfrac{\pi }{n}} \right) + \sin \left( {\dfrac{{2\pi }}{n}} \right) + .......... + \sin \left( {\dfrac{{2n\pi }}{n}} \right)} \right)?

Explanation

Solution

Here, we will first write the general term for the expression given in the question. Then, we will use the concepts of the limit of sum to change the expression into an integration form. Then, we will write the limits of integration and then will carry out the integration.
Formula used:
cos2π=1\cos 2\pi = 1
cos0=1\cos 0 = 1
sin(nx)dx=cos(nx)n\int {\sin \left( {nx} \right)dx = \dfrac{{ - \cos \left( {nx} \right)}}{n}}

Complete step by step answer:
Given,
limn1n(sin(πn)+sin(2πn)+..........+sin(2nπn))\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{n}\left( {\sin \left( {\dfrac{\pi }{n}} \right) + \sin \left( {\dfrac{{2\pi }}{n}} \right) + .......... + \sin \left( {\dfrac{{2n\pi }}{n}} \right)} \right)
Now, we will first write the general term for the expression given in the question. We can observe that:
1st term is: sinπn\sin \dfrac{\pi }{n}
2nd term is: sin2πn\sin \dfrac{{2\pi }}{n}
Last term is: sin2nπn\sin \dfrac{{2n\pi }}{n}
So, we can say that the angle πn\dfrac{\pi }{n} is constant and its coefficient is increasing from 1 to 2n1{\text{ to }}2n.
Hence, we can write the general term as:
r=12nsin(rπn)\sum\limits_{r = 1}^{2n} {\sin \left( {\dfrac{{r\pi }}{n}} \right)}
Now, the question becomes:
limn1nr=12nsin(rπn)\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{n}\sum\limits_{r = 1}^{2n} {\sin \left( {\dfrac{{r\pi }}{n}} \right)}
Now, for evaluating the above expression we will use the concepts of limit of sum.
So,
1ndx\dfrac{1}{n} \to dx, and rnx\dfrac{r}{n} \to x.
Now, on the summation sign we can see that r goes from 1 to 2nr{\text{ goes from }}1{\text{ to }}2n. From here we will decide the limit of integration.
Since, rnx\dfrac{r}{n} \to x, so we can write at:
r=1 we get x=1nr = 1{\text{ we get }}x = \dfrac{1}{n}
x=0 since n\Rightarrow x = 0{\text{ since }}n \to \infty
Similarly, at r=2nr = 2n we get x=2nnx = \dfrac{{2n}}{n}
x=2\Rightarrow x = 2
Now, we will put these into limn1nr=12nsin(rπn)\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{n}\sum\limits_{r = 1}^{2n} {\sin \left( {\dfrac{{r\pi }}{n}} \right)} . So, we get
limn1nr=12nsin(rπn)=02sin(πx)dx\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{1}{n}\sum\limits_{r = 1}^{2n} {\sin \left( {\dfrac{{r\pi }}{n}} \right)} = \int\limits_0^2 {\sin \left( {\pi x} \right)} dx
On integrating the RHS, the above equation becomes
=(cos(πx)x)02= \left( {\dfrac{{ - \cos \left( {\pi x} \right)}}{x}} \right)_0^2
Now we will put the upper and lower limit.
=(cos(2π)πcos(0π)π)= \left( {\dfrac{{ - \cos \left( {2\pi } \right)}}{\pi } - \dfrac{{ - \cos \left( {0\pi } \right)}}{\pi }} \right)
Now we will put cos2π=1\cos 2\pi = 1, and cos0=1\cos 0 = 1, we get
=(1π+1π)= \left( {\dfrac{{ - 1}}{\pi } + \dfrac{1}{\pi }} \right)
=0= 0
So,
limn1n(sin(πn)+sin(2πn)+..........+sin(2nπn))\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{n}\left( {\sin \left( {\dfrac{\pi }{n}} \right) + \sin \left( {\dfrac{{2\pi }}{n}} \right) + .......... + \sin \left( {\dfrac{{2n\pi }}{n}} \right)} \right) =0 = 0

Note:
One major mistake that most of the students commit is that they do not change the limit when they convert the expression to the integration form. So, take care that while changing to integration form change the limit of summation accordingly. Another point to note is that in the summation the limit of rr goes from 1 to 2n1{\text{ to }}2n and not from 0 to 2n{\text{0 to }}2n.