Solveeit Logo

Question

Question: What is \(\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right)\) equal to? (a) 1 (b) 2 ...

What is (1+cotxcscx)(1+tanx+secx)\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right) equal to?
(a) 1
(b) 2
(c) sinx\sin x
(d) cosx\cos x

Explanation

Solution

To find the value of (1+cotxcscx)(1+tanx+secx)\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right) , we have to apply the formulas cotx=cosxsinx,cscx=1sinx,tanx=sinxcosx\cot x=\dfrac{\cos x}{\sin x},\csc x=\dfrac{1}{\sin x},\tan x=\dfrac{\sin x}{\cos x} and secx=1cosx\sec x=\dfrac{1}{\cos x} in this expression. Then, we have to simplify and use the trigonometric and algebraic formulas including a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) , (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} and sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 . Then, we have to simplify the expression.

Complete step by step solution:
We have to find the value of (1+cotxcscx)(1+tanx+secx)\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right) . We know that cotx=cosxsinx,cscx=1sinx,tanx=sinxcosx\cot x=\dfrac{\cos x}{\sin x},\csc x=\dfrac{1}{\sin x},\tan x=\dfrac{\sin x}{\cos x} and secx=1cosx\sec x=\dfrac{1}{\cos x} . Let us substitute these results in the given trigonometric expression.
(1+cosxsinx1sinx)(1+sinxcosx+1cosx)\Rightarrow \left( 1+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( 1+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right)
Let us take the LCM of the terms inside each bracket.
(1×sinx1×sinx+cosxsinx1sinx)(1×cosx1×cosx+sinxcosx+1cosx) =(sinxsinx+cosxsinx1sinx)(cosxcosx+sinxcosx+1cosx) \begin{aligned} & \Rightarrow \left( \dfrac{1\times \sin x}{1\times \sin x}+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( \dfrac{1\times \cos x}{1\times \cos x}+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right) \\\ & =\left( \dfrac{\sin x}{\sin x}+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( \dfrac{\cos x}{\cos x}+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right) \\\ \end{aligned}
Let us add the terms inside the brackets.
(sinx+cosx1sinx)(cosx+sinx+1cosx)\Rightarrow \left( \dfrac{\sin x+\cos x-1}{\sin x} \right)\left( \dfrac{\cos x+\sin x+1}{\cos x} \right)
We have to multiply the brackets.
(sinx+cosx1)(cosx+sinx+1)sinxcosx\Rightarrow \dfrac{\left( \sin x+\cos x-1 \right)\left( \cos x+\sin x+1 \right)}{\sin x\cos x}
We can rearrange the terms inside the second bracket of the numerator as shown below.
(sinx+cosx1)(sinx+cosx+1)sinxcosx\Rightarrow \dfrac{\left( \sin x+\cos x-1 \right)\left( \sin x+\cos x+1 \right)}{\sin x\cos x}
Let us group the terms as shown below.
((sinx+cosx)1)((sinx+cosx)+1)sinxcosx\Rightarrow \dfrac{\left( \left( \sin x+\cos x \right)-1 \right)\left( \left( \sin x+\cos x \right)+1 \right)}{\sin x\cos x}
We can see that the numerator is of the form a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) . Therefore, we can write the above equation as
(sinx+cosx)212sinxcosx =(sinx+cosx)21sinxcosx \begin{aligned} & \Rightarrow \dfrac{{{\left( \sin x+\cos x \right)}^{2}}-{{1}^{2}}}{\sin x\cos x} \\\ & =\dfrac{{{\left( \sin x+\cos x \right)}^{2}}-1}{\sin x\cos x} \\\ \end{aligned}
We know that (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} . Therefore, the above equation becomes
sin2x+2sinxcosx+cos2x1sinxcosx\Rightarrow \dfrac{{{\sin }^{2}}x+2\sin x\cos x+{{\cos }^{2}}x-1}{\sin x\cos x}
We can rearrange the numerator of the above expression as
sin2x+cos2x1+2sinxcosxsinxcosx\Rightarrow \dfrac{{{\sin }^{2}}x+{{\cos }^{2}}x-1+2\sin x\cos x}{\sin x\cos x}
We know that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 . Therefore, the above expression becomes
11+2sinxcosxsinxcosx =0+2sinxcosxsinxcosx =2sinxcosxsinxcosx \begin{aligned} & \Rightarrow \dfrac{1-1+2\sin x\cos x}{\sin x\cos x} \\\ & =\dfrac{0+2\sin x\cos x}{\sin x\cos x} \\\ & =\dfrac{2\sin x\cos x}{\sin x\cos x} \\\ \end{aligned}
We can cancel sinxcosx\sin x\cos x from the numerator and denominator.
2\requirecancelsinxcosx\requirecancelsinxcosx\Rightarrow \dfrac{2\require{cancel}\cancel{\sin x\cos x}}{\require{cancel}\cancel{\sin x\cos x}}
We can write the result of the above simplification as
2\Rightarrow 2
Hence, (1+cotxcscx)(1+tanx+secx)=2\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right)=2 .

So, the correct answer is “Option b”.

Note: Students must be thorough with the formulas of trigonometric functions. They have a chance of making a mistake by writing the formula for cscx\csc x as 1cosx\dfrac{1}{\cos x} and secx\sec x as 1sinx\dfrac{1}{\sin x} . Also, students may be get confused with the formula sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 by writing the value of sin2x+cos2x{{\sin }^{2}}x+{{\cos }^{2}}x as -1. They must also be thorough with algebraic identities.