Question
Question: What is \(\int{\dfrac{x}{1+\sin x}dx}\)?...
What is ∫1+sinxxdx?
Solution
We first multiply with 1−sinx to simplify the trigonometric function of 1+sinxx. We convert the trigonometric function in its integral form and then apply it by parts to find the solution of ∫1+sinxxdx.
Complete step by step solution:
To complete the integration, we first simplify the function 1+sinxx. We multiply both numerator and denominator with 1−sinx.
We get (1+sinx)(1−sinx)x(1−sinx)=1−sin2xx(1−sinx)=cos2xx(1−sinx).
Now we simplify the trigonometric part and get cos2xx(1−sinx)=x(sec2x−tanxsecx).
We now individually find the integration of the trigonometric part where we get
∫(sec2x−tanxsecx)dx=tanx−secx.
We now apply the by parts to find the integral of ∫x(sec2x−tanxsecx)dx.
Integration by parts method is usually used for the multiplication of the functions and their integration.
Let’s assume f(x)=g(x)h(x). We need to find the integration of ∫f(x)dx=∫g(x)h(x)dx.
We take u=g(x),v=h(x). This gives ∫f(x)dx=∫uvdx.
The theorem of integration by parts gives ∫uvdx=u∫vdx−∫(dxdu∫vdx)dx.
For our integration ∫x(sec2x−tanxsecx)dx, we take u=x,v=(sec2x−tanxsecx).
Now we complete the integration
∫x(sec2x−tanxsecx)dx=x∫(sec2x−tanxsecx)dx−∫(dxd(x)∫(sec2x−tanxsecx)dx)dx.
The integration formula for ∫xndx=n+1xn+1+c.
We apply these formulas to complete the integration and get
∫x(sec2x−tanxsecx)dx=x(tanx−secx)−∫(tanx−secx)dx.
We have one more integration part.
So, ∫x(sec2x−tanxsecx)dx=x(tanx−secx)−log∣secx∣+log∣secx+tanx∣+c.
Here c is the integral constant.
We simplify the form to get