Solveeit Logo

Question

Question: What is \( \int{\dfrac{{{\tan }^{2}}x}{\sec x}dx} \) ?...

What is tan2xsecxdx\int{\dfrac{{{\tan }^{2}}x}{\sec x}dx} ?

Explanation

Solution

Hint : We first use the trigonometric form of tan2x=sec2x1{{\tan }^{2}}x={{\sec }^{2}}x-1 to simplify the fraction form of tan2xsecx\dfrac{{{\tan }^{2}}x}{\sec x} . Then we break the integration in two parts and use the integral form of cosxdx=sinx\int{\cos xdx}=\sin x and secxdx=logsecx+tanx\int{\sec xdx}=\log \left| \sec x+\tan x \right| . We use an integral constant to find the final solution.

Complete step by step solution:
We first need to convert the numerator of the fraction tan2xsecx\dfrac{{{\tan }^{2}}x}{\sec x} into the form of tan2x=sec2x1{{\tan }^{2}}x={{\sec }^{2}}x-1 .
We now simplify the given fraction in the form of
tan2xsecx=sec2x1secx=secx1secx\dfrac{{{\tan }^{2}}x}{\sec x}=\dfrac{{{\sec }^{2}}x-1}{\sec x}=\sec x-\dfrac{1}{\sec x} .
We know that
1secx=cosx\dfrac{1}{\sec x}=\cos x which gives tan2xsecx=secxcosx\dfrac{{{\tan }^{2}}x}{\sec x}=\sec x-\cos x .
Now we integrate the function separately and get
tan2xsecxdx=(secxcosx)dx\int{\dfrac{{{\tan }^{2}}x}{\sec x}dx}=\int{\left( \sec x-\cos x \right)dx} .
The function gets separated and gives
(secxcosx)dx=secxdxcosxdx\int{\left( \sec x-\cos x \right)dx}=\int{\sec xdx}-\int{\cos xdx} .
We know that secxdx=logsecx+tanx\int{\sec xdx}=\log \left| \sec x+\tan x \right| and cosxdx=sinx\int{\cos xdx}=\sin x .
Therefore, the integral form is
(secxcosx)dx=logsecx+tanxsinx+c\int{\left( \sec x-\cos x \right)dx}=\log \left| \sec x+\tan x \right|-\sin x+c .
Here cc is the integral constant.
Therefore, the solution of tan2xsecxdx\int{\dfrac{{{\tan }^{2}}x}{\sec x}dx} is logsecx+tanxsinx+c\log \left| \sec x+\tan x \right|-\sin x+c .
So, the correct answer is “ logsecx+tanxsinx+c\log \left| \sec x+\tan x \right|-\sin x+c .”.

Note : We can also solve the integration using the base change for the variable z=tanxz=\tan x . In that case the sum gets complicated but the final solution would be the same. It is better to watch out for the transformations in the trigonometric forms in the fractions and take that as the change in the variable.