Solveeit Logo

Question

Question: What is \(\int {\dfrac{{dx}}{{{2^x} - 1}}} \) equal to? A. \(\ln ({2^x} - 1) + c\) B. \[\dfrac{{...

What is dx2x1\int {\dfrac{{dx}}{{{2^x} - 1}}} equal to?
A. ln(2x1)+c\ln ({2^x} - 1) + c
B. ln(12x)ln2+c\dfrac{{\ln (1 - {2^{ - x}})}}{{\ln 2}} + c
C. ln(2x1)ln2+c\dfrac{{\ln ({2^{ - x}} - 1)}}{{\ln 2}} + c
D. ln(1+2x)ln2+c\dfrac{{\ln (1 + {2^{ - x}})}}{{\ln 2}} + c

Explanation

Solution

Hint: Here, we need to solve the given integral by substitution method and then simplifying the given integral and then the use of the required formulae of integration.

Complete step-by-step answer:
Let I=dx2x1I = \int {\dfrac{{dx}}{{{2^x} - 1}}}
Let 2x1=t{2^x} - 1 = t
Differentiate it w.r.t x
\Rightarrow \dfrac{{d({2^x} - 1)}}{{dx}} = \dfrac{{dt}}{{dx}} \\\ \Rightarrow \ln 2 \times {2^x}dx = dt \\\ \Rightarrow dx = \dfrac{{dt}}{{{2^x}\ln 2}}{\text{ & }}{{\text{2}}^x} = t + 1 \\\ \Rightarrow dx = \dfrac{{dt}}{{(t + 1)\ln 2}} \\\
Now substitute this value in the integral
I=1tdt(t+1)ln2I = \int {\dfrac{1}{t}\dfrac{{dt}}{{(t + 1)\ln 2}}}
Now apply partial fraction for 1t(t+1)\dfrac{1}{{t(t + 1)}}
=1ln2(1t1t+1)dt= \dfrac{1}{{\ln 2}}\int {\left( {\dfrac{1}{t} - \dfrac{1}{{t + 1}}} \right)} dt
Now apply integration
=1ln2[lntln(t+1)]+c =1ln2[lntt+1]+c  = \dfrac{1}{{\ln 2}}[\ln t - \ln (t + 1)] + c \\\ = \dfrac{1}{{\ln 2}}[\ln \dfrac{t}{{t + 1}}] + c \\\
Substitute the value of t=2x1t = {2^x} - 1
=1ln2[ln(2x1)2x]+c ln(12x)ln2+c  = \dfrac{1}{{\ln 2}}\left[ {\ln \dfrac{{({2^x} - 1)}}{{{2^x}}}} \right] + c \\\ \Rightarrow \dfrac{{\ln (1 - {2^{ - x}})}}{{\ln 2}} + c \\\
Therefore, option B is correct.

Note: Integrals can be simplified to standard form by substitution techniques which can be easily evaluated using the standard integration formulas.