Question
Question: What is \(\int {\dfrac{{dx}}{{{2^x} - 1}}} \) equal to? A. \(\ln ({2^x} - 1) + c\) B. \[\dfrac{{...
What is ∫2x−1dx equal to?
A. ln(2x−1)+c
B. ln2ln(1−2−x)+c
C. ln2ln(2−x−1)+c
D. ln2ln(1+2−x)+c
Solution
Hint: Here, we need to solve the given integral by substitution method and then simplifying the given integral and then the use of the required formulae of integration.
Complete step-by-step answer:
Let I=∫2x−1dx
Let 2x−1=t
Differentiate it w.r.t x
\Rightarrow \dfrac{{d({2^x} - 1)}}{{dx}} = \dfrac{{dt}}{{dx}} \\\
\Rightarrow \ln 2 \times {2^x}dx = dt \\\
\Rightarrow dx = \dfrac{{dt}}{{{2^x}\ln 2}}{\text{ & }}{{\text{2}}^x} = t + 1 \\\
\Rightarrow dx = \dfrac{{dt}}{{(t + 1)\ln 2}} \\\
Now substitute this value in the integral
I=∫t1(t+1)ln2dt
Now apply partial fraction for t(t+1)1
=ln21∫(t1−t+11)dt
Now apply integration
=ln21[lnt−ln(t+1)]+c =ln21[lnt+1t]+c
Substitute the value of t=2x−1
=ln21[ln2x(2x−1)]+c ⇒ln2ln(1−2−x)+c
Therefore, option B is correct.
Note: Integrals can be simplified to standard form by substitution techniques which can be easily evaluated using the standard integration formulas.