Solveeit Logo

Question

Question: What is equal to \[\tan \left( \dfrac{\pi }{12} \right)\]? A. \[2-\sqrt{3}\] B. \[2+\sqrt{3}\] ...

What is equal to tan(π12)\tan \left( \dfrac{\pi }{12} \right)?
A. 232-\sqrt{3}
B. 2+32+\sqrt{3}
C. 23\sqrt{2}-\sqrt{3}
D. 32\sqrt{3}-\sqrt{2}

Explanation

Solution

Hint: To solve the question, we have to apply trigonometric identities and the values of trigonometric functions to arrive at the value of tan(π12)\tan \left( \dfrac{\pi }{12} \right).

Complete step-by-step answer:

We know that the formula for tan2α\tan 2\alpha is given by 2tanα1tan2α\dfrac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }
By substituting α=π12\alpha =\dfrac{\pi }{12} in the above formula we get
tan(2π12)=2tan(π12)1(tan(π12))2\tan \left( \dfrac{2\pi }{12} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}
tan(π6)=2tan(π12)1(tan(π12))2\tan \left( \dfrac{\pi }{6} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}} …….. (1)
We know that the value of tan(π6)\tan \left( \dfrac{\pi }{6} \right) is equal to 13\dfrac{1}{\sqrt{3}}
By substituting the above mentioned value in equation (1) we get,
13=2tan(π12)1(tan(π12))2\dfrac{1}{\sqrt{3}}=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}
Cross multiply the above expression to obtain a quadratic expression of tan(π12)\tan \left( \dfrac{\pi }{12} \right).
1(tan(π12))2=3(2tan(π12))1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}=\sqrt{3}\left( 2\tan \left( \dfrac{\pi }{12} \right) \right)
(tan(π12))2+23(tan(π12))1=0{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}+2\sqrt{3}\left( \tan \left( \dfrac{\pi }{12} \right) \right)-1=0 …….. (2)
We know that the solutions of the general quadratic expression ax2+bx+c=0a{{x}^{2}}+bx+c=0 are given by b±b24ac2a\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}
On comparing the above expression with equation (2) we get,
The values of a = 1, b = 232\sqrt{3}, c = -1
Thus, the possible values of tan(π12)\tan \left( \dfrac{\pi }{12} \right) are equal to 23±(23)24(1)(1)2(1)\dfrac{-2\sqrt{3}\pm \sqrt{{{\left( 2\sqrt{3} \right)}^{2}}-4(1)(-1)}}{2(1)}
We know that (ab)m=am×bm{{\left( ab \right)}^{m}}={{a}^{m}}\times {{b}^{m}}
=23±(22×3)+42=\dfrac{-2\sqrt{3}\pm \sqrt{\left( {{2}^{2}}\times 3 \right)+4}}{2}
=23±12+42=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}
=23±162=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}
=23±42=\dfrac{-2\sqrt{3}\pm 4}{2}
Since we know that the value of 16=4×4=42=4\sqrt{16}=\sqrt{4\times 4}=\sqrt{{{4}^{2}}}=4.
tan(π12)=2(3±2)2\Rightarrow \tan \left( \dfrac{\pi }{12} \right)=\dfrac{2\left( -\sqrt{3}\pm 2 \right)}{2}
tan(π12)=3±2\tan \left( \dfrac{\pi }{12} \right)=-\sqrt{3}\pm 2
We know that tanα\tan \alpha is positive in the interval 0<α<π20<\alpha <\dfrac{\pi }{2} . Thus, we get
tan(π12)=23\tan \left( \dfrac{\pi }{12} \right)=2-\sqrt{3}
\therefore The value of tan(π12)\tan \left( \dfrac{\pi }{12} \right) is equal to 232-\sqrt{3}

Note: The possibility of mistake can be the calculation since the procedure of solving requires square root terms. The other possibility of mistake is not being able to choose the correct answer out of the obtained two values. The alternative way of solving can be, to calculate the value of cos(π12),sin(π12)\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right) since we know the value of cos(π6)\cos \left( \dfrac{\pi }{6} \right) is equal to 32\dfrac{\sqrt{3}}{2} . By substituting the values in the formula cos2α=2cos2α1=12sin2α\cos 2\alpha =2{{\cos }^{2}}\alpha -1=1-2{{\sin }^{2}}\alpha , we can calculate the value of cos(π12),sin(π12)\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right). Using the formula tanα=sinαcosα\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha } we can calculate the value of tan(π12)\tan \left( \dfrac{\pi }{12} \right). This method eases the procedure of solving.