Solveeit Logo

Question

Question: What is \((\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{c...

What is (sec18sec144+cosec18cosec144)(\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }}) equal to?
A) sec18{\text{sec18}}^\circ
B) cosec18{\text{cosec18}}^\circ
C)  - sec18{\text{ - sec18}}^\circ
D)  - cosec18{\text{ - cosec18}}^\circ

Explanation

Solution

Here we can see secant and cosecant are the reciprocals of cosine and sine respectively. So we can replace them. Then we can replace the angle 144144 by 18036180 - 36. So we can apply equations of cos2θ\cos 2\theta and sin2θ\sin 2\theta . Then solving using trigonometric relations we get the answer.

Formula used: For any angle θ\theta we have the following trigonometric relations.
secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }} and cosecθ=1sinθ{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}
cos(180θ)=cosθ\cos (180 - \theta ) = - \cos \theta and sin(180θ)=sinθ\sin (180 - \theta ) = \sin \theta
cos2θ=cos2θsin2θ\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1

Complete step-by-step solution:
We have to find the value of (sec18sec144+cosec18cosec144)(\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }}).
Since secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }} and cosecθ=1sinθ{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}, we can write
\Rightarrow sec18sec144+cosec18cosec144=cos144cos18+sin144sin18\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{\cos 144^\circ }}{{\cos 18^\circ }} + \dfrac{{{\text{sin144}}^\circ }}{{{\text{sin18}}^\circ }}
We can replace 144144 by 18036180 - 36. So we have,
\Rightarrow sec18sec144+cosec18cosec144=cos(18036)cos18+sin(18036)sin18\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{\cos (180 - 36)^\circ }}{{\cos 18^\circ }} + \dfrac{{{\text{sin}}(180 - 36)^\circ }}{{{\text{sin18}}^\circ }}
For angles less than 90{90^ \circ }, 180θ180 - \theta belongs to the second quadrant.
In the second quadrant sine and cosine values are positive and all other values are negative.
We know cos(180θ)=cosθ\cos (180 - \theta ) = - \cos \theta and sin(180θ)=sinθ\sin (180 - \theta ) = \sin \theta
So we get from the above equation,
\Rightarrow sec18sec144+cosec18cosec144=cos36cos18+sin36sin18\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = - \dfrac{{\cos 36^\circ }}{{\cos 18^\circ }} + \dfrac{{{\text{sin}}36^\circ }}{{{\text{sin18}}^\circ }}
Now we have the equations:
cos2θ=cos2θsin2θ\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
Using these equations we can write,
\Rightarrow cos36=cos218sin218\cos 36^\circ = {\cos ^2}18^\circ - {\sin ^2}18^\circ
\Rightarrow sin36=2sin18cos18\sin 36^\circ = 2\sin 18^\circ \cos 18^\circ
Substituting these in the above equation we have,
\Rightarrow sec18sec144+cosec18cosec144=(cos218sin218cos18)+2sin18cos18sin18\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = - (\dfrac{{{{\cos }^2}18^\circ - {{\sin }^2}18^\circ }}{{\cos 18^\circ }}) + \dfrac{{2\sin 18^\circ \cos 18^\circ }}{{{\text{sin18}}^\circ }}
Cancelling sin18\sin 18^\circ from numerator and denominator on the second term of right hand side of the above equation,
We have,
\Rightarrow sec18sec144+cosec18cosec144=sin218cos218cos18+2cos18\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{{{\sin }^2}18^\circ - {{\cos }^2}18^\circ }}{{\cos 18^\circ }} + 2\cos 18^\circ
Simplifying the above equation we get,
\Rightarrow sec18sec144+cosec18cosec144=sin218cos218+2cos218cos18\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{{{\sin }^2}18^\circ - {{\cos }^2}18^\circ + 2{{\cos }^2}18^\circ }}{{\cos 18^\circ }}
sec18sec144+cosec18cosec144=sin218+cos218cos18\Rightarrow \dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{{{\sin }^2}18^\circ + {{\cos }^2}18^\circ }}{{\cos 18^\circ }}
Also we know that
sin2θ+cos2θ=1sin^2 \theta + cos^2 \theta =1
Using this result in the above equation we get,
\Rightarrow sec18sec144+cosec18cosec144=1cos18\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{1}{{\cos 18^\circ }}
secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}
\Rightarrow sec18sec144+cosec18cosec144=sec18\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \sec 18^\circ
Thus we get the solution.

\therefore The answer is option A.

Note: We changed the trigonometric ratios to sin\sin and cos\cos so that we can simplify easily. There are different trigonometric rules to solve these types of problems. We have to choose the appropriate equations in each step. For cos2θ\cos 2\theta we have four equations. But here we chose this one so that we can simplify the answer.