Solveeit Logo

Question

Question: What is \(\dfrac{{\cos 7x - \cos 3x}}{{\sin 7x - 2\sin 5x + \sin 3x}}\)equal to? A) \(\tan x\) B...

What is cos7xcos3xsin7x2sin5x+sin3x\dfrac{{\cos 7x - \cos 3x}}{{\sin 7x - 2\sin 5x + \sin 3x}}equal to?
A) tanx\tan x
B) cotx\cot x
C) tan2x\tan 2x
D) cot2x\cot 2x

Explanation

Solution

This is a problem based on trigonometric function. Initially we will use the cosA±cosBcosA \pm cosB and sinA±sinBsinA\pm sinB formula to simplify it. Then we will use some other trigonometric formulas to get our required answer. Some of the formulas are mentioned below.
tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
cos2θ=2cos2θ1=12sin2θ\cos 2\theta = 2{\cos ^2}\theta - 1 = 1 - 2{\sin ^2}\theta
cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)
sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)

Complete answer:
The given trigonometric function is cos7xcos3xsin7x2sin5x+sin3x\dfrac{{\cos 7x - \cos 3x}}{{\sin 7x - 2\sin 5x + \sin 3x}}. The objective is to solve the given function using trigonometric identities.
First, simplify the numerator term of the given function by using the identity,
cosCcosD=2sin(C+D2)sin(CD2)\cos C - \cos D = - 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right)
2sin(7x+3x2)sin(7x3x2)sin7x2sin5x+sin3x\dfrac{{ - 2\sin \left( {\dfrac{{7x + 3x}}{2}} \right)\sin \left( {\dfrac{{7x - 3x}}{2}} \right)}}{{\sin 7x - 2\sin 5x + \sin 3x}}
=2sin(10x2)sin(4x2)sin7x2sin5x+sin3x= \dfrac{{ - 2\sin \left( {\dfrac{{10x}}{2}} \right)\sin \left( {\dfrac{{4x}}{2}} \right)}}{{\sin 7x - 2\sin 5x + \sin 3x}}
=2sin5xsin2xsin7x2sin5x+sin3x= \dfrac{{ - 2\sin 5x\sin 2x}}{{\sin 7x - 2\sin 5x + \sin 3x}}
Now, we need to solve the denominator terms, use the identity given by
sinC+sinD=2sin(C+D2)cos(CD2)\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)
To evaluate the terms sin7x+sin3x\sin 7x + \sin 3x
=2sin5xsin2x2sin(7x+3x2)cos(7x3x2)2sin5x= \dfrac{{ - 2\sin 5x\sin 2x}}{{2\sin \left( {\dfrac{{7x + 3x}}{2}} \right)\cos \left( {\dfrac{{7x - 3x}}{2}} \right) - 2\sin 5x}}
=2sin5xsin2x2sin(10x2)cos(4x2)2sin5x= \dfrac{{ - 2\sin 5x\sin 2x}}{{2\sin \left( {\dfrac{{10x}}{2}} \right)\cos \left( {\dfrac{{4x}}{2}} \right) - 2\sin 5x}}
=2sin5xsin2x2sin5xcos2x2sin5x= \dfrac{{ - 2\sin 5x\sin 2x}}{{2\sin 5x\cos 2x - 2\sin 5x}}
Take 2sin5x - 2\sin 5x common from both numerator and denominator
=2sin5x(sin2x)2sin5x(1cos2x)= \dfrac{{ - 2\sin 5x(\sin 2x)}}{{2\sin 5x(1 - \cos 2x)}}
Cancel the term 2sin5x - 2\sin 5x from both the numerator and denominator, to get
=sin2x1cos2x= \dfrac{{\sin 2x}}{{1 - \cos 2x}}
Use the identity given by: sin2x=2sinxcosx\sin 2x = 2\sin x\cos x to evaluate the numerator term of the given trigonometric function,
=2sinxcosx1cos2x= \dfrac{{2\sin x\cos x}}{{1 - \cos 2x}}
Now use the identity given by:cos2x=12sin2x\cos 2x = 1 - 2{\sin ^2}x to replace the term cos2x\cos 2xin the denominator,
=2sinxcosx1(12sin2x)= \dfrac{{2\sin x\cos x}}{{1 - (1 - 2{{\sin }^2}x)}}
Open the bracket term in the denominator by reversing the sign inside the bracket
=2sinxcosx11+2sin2x= \dfrac{{2\sin x\cos x}}{{1 - 1 + 2{{\sin }^2}x}}
=2sinxcosx2sin2x= \dfrac{{2\sin x\cos x}}{{2{{\sin }^2}x}}
Take the term 2sinx2\sin x common from the numerator and denominator
=2sinx(cosx)2sinx(sinx)= \dfrac{{2\sin x(\cos x)}}{{2\sin x(\sin x)}}
Cancel the term 2sinx2\sin xfrom the numerator and denominator
=cosxsinx= \dfrac{{\cos x}}{{\sin x}}
Since, we know that cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}, so
=cotx= \cot x
Hence, we get that cos7xcos3xsin7x2sin5x+sin3x=cotx\dfrac{{\cos 7x - \cos 3x}}{{\sin 7x - 2\sin 5x + \sin 3x}} = \cot x.

Therefore, the correct option is B

Note: Trigonometric functions can be simply defined as the functions of an angle of a triangle and the basic trigonometric functions are sine, cosine, tangent, cotangent, secant, and cosecant. Also, whenever we are asked to calculate or solve the given trigonometric expression or equation, we should be able to apply the appropriate trigonometric identities and formulae. Sometimes we tend to apply the algebraic identities too.