Solveeit Logo

Question

Question: What is \[\dfrac{1}{1} + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} + ....... + \dfrac{1}{{1 + 2 + ...

What is 11+11+2+11+2+3+.......+11+2+3+...+2015\dfrac{1}{1} + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} + ....... + \dfrac{1}{{1 + 2 + 3 + ... + 2015}}?

Explanation

Solution

To find the value of 11+11+2+11+2+3+.......+11+2+3+...+2015\dfrac{1}{1} + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} + ....... + \dfrac{1}{{1 + 2 + 3 + ... + 2015}} we will first solve for general term ‘nn’ by finding the general nth{n^{th}} term and then using sn=k=1k=ntk{s_n} = \sum\limits_{k = 1}^{k = n} {{t_k}} we will find the sum in terms of nn. At last, we will put n=2015n = 2015 to find the required result.

Complete step-by-step solution:
We have to find the value of 11+11+2+11+2+3+.......+11+2+3+...+2015\dfrac{1}{1} + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} + ....... + \dfrac{1}{{1 + 2 + 3 + ... + 2015}}.
Here, we will use the concept of summation. The summation is a process of adding up a sequence of given numbers, the result is their sum or total. It is usually required when the large numbers of data are given and it instructs to total up all values in a given sequence.
Let sn=11+11+2+11+2+3+.......+11+2+3+...+2015{s_n} = \dfrac{1}{1} + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} + ....... + \dfrac{1}{{1 + 2 + 3 + ... + 2015}}.
Also, let any general nth{n^{th}} term as tn{t_n} which is given by
tn=11+2+3+...+n\Rightarrow {t_n} = \dfrac{1}{{1 + 2 + 3 + ... + n}}
We can write tn{t_n} as
tn=1k=1k=nk\Rightarrow {t_n} = \dfrac{1}{{\sum\limits_{k = 1}^{k = n} k }}
As we know, 1+2+3+...+n=n(n+1)21 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}, using this we can write
tn=1n(n+1)2\Rightarrow {t_n} = \dfrac{1}{{\dfrac{{n\left( {n + 1} \right)}}{2}}}
On rewriting we get,
tn=2[(n+1)nn(n+1)]\Rightarrow {t_n} = 2\left[ {\dfrac{{\left( {n + 1} \right) - n}}{{n\left( {n + 1} \right)}}} \right]
On simplification we get,
tn=2[(n+1)n(n+1)nn(n+1)]\Rightarrow {t_n} = 2\left[ {\dfrac{{\left( {n + 1} \right)}}{{n\left( {n + 1} \right)}} - \dfrac{n}{{n\left( {n + 1} \right)}}} \right]
On further simplification we get
tn=2[1n1(n+1)]\Rightarrow {t_n} = 2\left[ {\dfrac{1}{n} - \dfrac{1}{{\left( {n + 1} \right)}}} \right]
As Sn=k=1k=ntk{S_n} = \sum\limits_{k = 1}^{k = n} {{t_k}}
Therefore, on putting the values of kk from 11 to nn in right side of the above equation, we get
Sn=t1+t2+t3+...+tn\Rightarrow {S_n} = {t_1} + {t_2} + {t_3} + ... + {t_n}
On putting values of nn from 11 to nn in tn{t_n}, we get
Sn=2[(1112)+(1213)+(1314)+...+(1n11n)+(1n1n+1)]\Rightarrow {S_n} = 2\left[ {\left( {\dfrac{1}{1} - \dfrac{1}{2}} \right) + \left( {\dfrac{1}{2} - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{3} - \dfrac{1}{4}} \right) + ... + \left( {\dfrac{1}{{n - 1}} - \dfrac{1}{n}} \right) + \left( {\dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right)} \right]
On simplification we get,
Sn=2(11n+1)\Rightarrow {S_n} = 2\left( {1 - \dfrac{1}{{n + 1}}} \right)
On taking the LCM, we get
Sn=2(n+11n+1)\Rightarrow {S_n} = 2\left( {\dfrac{{n + 1 - 1}}{{n + 1}}} \right)
On simplification we get
Sn=2nn+1\Rightarrow {S_n} = \dfrac{{2n}}{{n + 1}}
We require a sum of terms up to n=2015n = 2015 i.e., S2015{S_{2015}} is required.
Therefore putting n=2015n = 2015, we get
S2015=(2×2015)(2015+1)\Rightarrow {S_{2015}} = \dfrac{{\left( {2 \times 2015} \right)}}{{\left( {2015 + 1} \right)}}
On simplification we get
S2015=20151008\Rightarrow {S_{2015}} = \dfrac{{2015}}{{1008}}
Therefore, 11+11+2+11+2+3+.......+11+2+3+...+2015\dfrac{1}{1} + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} + ....... + \dfrac{1}{{1 + 2 + 3 + ... + 2015}} is 20151008\dfrac{{2015}}{{1008}}

Note: Here, we have arranged the terms in such a fashion that it cancels each other and we get simplified results. Also, we have used the concept of summation as it enables us to write short forms for the addition of very large numbers for a given data in a sequence which reduces the complexity of the problem .