Question
Question: What is \( \cot A+\csc A \) equal to? A. \( \tan \dfrac{A}{2} \) B. \( \cot \dfrac{A}{2} \) ...
What is cotA+cscA equal to?
A. tan2A
B. cot2A
C. 2tan2A
D. 2cot2A
Solution
Use the facts that cotθ=sinθcosθ , tanθ=cosθsinθ and cscθ=sinθ1 .
Use the following identities to convert from sum to product form:
sin2A=2sinAcosA
cos2A+cos2B=2cos(A+B)cos(A−B)
Recall that cos0=1 .
Complete step-by-step answer:
Using cotθ=sinθcosθ and cscθ=sinθ1 , we can write:
cotA+cscA
= sinAcosA+sinA1
Since cos0=1 , we can write it as:
= sinAcosA+cos0
Using cos2A+cos2B=2cos(A+B)cos(A−B) and sin2A=2sinAcosA , we get:
= 2sin2Acos2A2cos(2A+20)cos(2A−20)
= 2sin2Acos2A2cos2Acos2A
Cancelling the common factors in the numerator and the denominator, we get:
= sin2Acos2A
Which can also be written as:
= cot2A
The correct answer is, therefore, A. cot2A .
Note: Angle Sum formula:
sin(A±B)=sinAcosB±sinBcosA
cos(A±B)=cosAcosB∓sinAsinB
Sum-Product formula:
sin2A+sin2B=2sin(A+B)cos(A−B)
sin2A−sin2B=2cos(A+B)sin(A−B)
cos2A+cos2B=2cos(A+B)cos(A−B)
cos2A−cos2B=−2sin(A+B)sin(A−B)