Solveeit Logo

Question

Question: What is \( \cot A+\csc A \) equal to? A. \( \tan \dfrac{A}{2} \) B. \( \cot \dfrac{A}{2} \) ...

What is cotA+cscA\cot A+\csc A equal to?
A. tanA2\tan \dfrac{A}{2}
B. cotA2\cot \dfrac{A}{2}
C. 2tanA22\tan \dfrac{A}{2}
D. 2cotA22\cot \dfrac{A}{2}

Explanation

Solution

Use the facts that cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta } , tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta } .
Use the following identities to convert from sum to product form:
sin2A=2sinAcosA\sin 2A=2\sin A\cos A
cos2A+cos2B=2cos(A+B)cos(AB)\cos 2A+\cos 2B=2\cos (A+B)\cos (A-B)
Recall that cos0=1\cos 0=1 .

Complete step-by-step answer:
Using cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta } and cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta } , we can write:
cotA+cscA\cot A+\csc A
= cosAsinA+1sinA\dfrac{\cos A}{\sin A}+\dfrac{1}{\sin A}
Since cos0=1\cos 0=1 , we can write it as:
= cosA+cos0sinA\dfrac{\cos A+\cos 0}{\sin A}
Using cos2A+cos2B=2cos(A+B)cos(AB)\cos 2A+\cos 2B=2\cos (A+B)\cos (A-B) and sin2A=2sinAcosA\sin 2A=2\sin A\cos A , we get:
= 2cos(A2+02)cos(A202)2sinA2cosA2\dfrac{2\cos \left( \tfrac{A}{2}+\tfrac{0}{2} \right)\cos \left( \tfrac{A}{2} - \tfrac{0}{2} \right)}{2\sin \tfrac{A}{2}\cos \tfrac{A}{2}}
= 2cosA2cosA22sinA2cosA2\dfrac{2\cos \tfrac{A}{2}\cos \tfrac{A}{2}}{2\sin \tfrac{A}{2}\cos \tfrac{A}{2}}
Cancelling the common factors in the numerator and the denominator, we get:
= cosA2sinA2\dfrac{\cos \tfrac{A}{2}}{\sin \tfrac{A}{2}}
Which can also be written as:
= cotA2\cot \dfrac{A}{2}

The correct answer is, therefore, A. cotA2\cot \dfrac{A}{2} .

Note: Angle Sum formula:
sin(A±B)=sinAcosB±sinBcosA\sin (A\pm B)=\sin A\cos B\pm \sin B\cos A
cos(A±B)=cosAcosBsinAsinB\cos (A\pm B)=\cos A\cos B\mp \sin A\sin B
Sum-Product formula:
sin2A+sin2B=2sin(A+B)cos(AB)\sin 2A+\sin 2B=2\sin (A+B)\cos (A-B)
sin2Asin2B=2cos(A+B)sin(AB)\sin 2A-\sin 2B=2\cos (A+B)\sin (A-B)
cos2A+cos2B=2cos(A+B)cos(AB)\cos 2A+\cos 2B=2\cos (A+B)\cos (A-B)
cos2Acos2B=2sin(A+B)sin(AB)\cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B)