Solveeit Logo

Question

Question: What is an example of an isotope abundance practice problem?...

What is an example of an isotope abundance practice problem?

Explanation

Solution

Hint : The formula to calculate the average atomic mass of the sample consisting of the isotopes is as follows:
Average atomic mass =M1×(FA)1+M2×(FA)2+........+Mn×(FA)nAverage{\text{ }}atomic{\text{ }}mass{\text{ }} = {M_1} \times {(FA)_1} + {M_2} \times {(FA)_2} + ........ + {M_n} \times {(FA)_n}
Where, M1{M_1}, M2{M_2},……, Mn{M_n} are mass of isotopes of 1,2,…..,n
And (FA) is the fractional abundance of isotope 1,2,……,n in the sample.

Complete Step By Step Answer:
Example: What is the average atomic mass of Neon, given that it has 3 isotopes with the follow percent abundances;

20Ne = 19.992 amu (90.51%),   21Ne = 20.993 amu (0.27%),   22Ne = 21.991 amu.  ^{20}Ne{\text{ }} = {\text{ }}19.992{\text{ }}amu{\text{ }}\left( {90.51\% } \right),\; \\\ ^{21}Ne{\text{ }} = {\text{ }}20.993{\text{ }}amu{\text{ }}\left( {0.27\% } \right),\; \\\ ^{22}Ne{\text{ }} = {\text{ }}21.991{\text{ }}amu. \\\

Let %\% abundance of 22Ne^{22}Ne be x, then

90.51%+0.27%+x=100% x=100(90.51+0.27)% x=9.22%  90.51\% + 0.27\% + x = 100\% \\\ x = 100 - (90.51 + 0.27)\% \\\ x = 9.22\% \\\ (FA)1=90.51%=90.51/100=0.9051 (FA)2=0.27%=0.27/100=0.0027 (FA)3=9.22%=9.22/100=0.0922  {(FA)_1} = 90.51\% = 90.51/100 = 0.9051 \\\ {(FA)_2} = 0.27\% = 0.27/100 = 0.0027 \\\ {(FA)_3} = 9.22\% = 9.22/100 = 0.0922 \\\

Now, putting the above values in the formula
Average atomic mass =M1×(FA)1+M2×(FA)2+........+Mn×(FA)nAverage{\text{ }}atomic{\text{ }}mass{\text{ }} = {M_1} \times {(FA)_1} + {M_2} \times {(FA)_2} + ........ + {M_n} \times {(FA)_n}

Average atomic mass =19.992×0.9051+20.993×0.0027+21.991×0.0922 Average atomic mass=20.179  Average{\text{ }}atomic{\text{ }}mass{\text{ }} = 19.992 \times 0.9051 + 20.993 \times 0.0027 + 21.991 \times 0.0922 \\\ Average{\text{ }}atomic{\text{ }}mass = 20.179 \\\

Hence, the average atomic mass of Neon is 20.179 amu.

Additional Information:
Isotopes are separated through mass spectrometry; Mass spectroscopy traces show the relative abundance of isotopes vs. mass number (mass : charge ratio).
Some naturally occurring and artificially produced isotopes are radioactive. All atoms heavier than Bismuth (31209Bi)(_{31}^{209}Bi) are radioactive. However, there are many lighter nuclides that are radioactive.

Note :
The sum of the percent natural abundances of all the isotopes of any given element must total 100%. Isotopes of a given element do not all exist in equal ratios.