Solveeit Logo

Question

Physics Question on Gravitation

What is a period of revolution of earth satellite ? Ignore the height of satellite above the surface of earth. Given : (1) The value of gravitational acceleration g=10ms2g= 10\,ms^{-2} (2) Radius of earth RE=6400kmR_E = 6400\, km. Take π=3.14\pi = 3.14

A

156 minutes

B

90 minutes

C

85 minutes

D

83.73 minutes

Answer

83.73 minutes

Explanation

Solution

Given,
Re=6400km=6.4×106mR_{e}=6400 \,km =6.4 \times 10^{6} \,m
π=3.14,g=10m/s2\pi=3.14, \,g=10 \,m / s ^{2}
We know that the period of revolution of the earth satellite
T=2π(Re+h)3gRθ2T=2 \pi \sqrt{\frac{\left(R_{e}+h\right)^{3}}{g R_{\theta}^{2}}}
[if h<<Reh << R_{e}, then, (Re+h=Re)]\left.\left(R_{e}+h=R_{e}\right)\right]
So, T=2πRe3gRe2T=2 \pi \sqrt{\frac{R_{e}^{3}}{g R_{e}^{2}}}
=2πReg=2×3.146.4×10610=2 \pi \sqrt{\frac{R_{e}}{g}}=2 \times 3.14 \sqrt{\frac{6.4 \times 10^{6}}{10}}
=2×3.14×0.8×103=2 \times 3.14 \times 0.8 \times 10^{3}
=5.024×103=5024s=5.024 \times 10^{3}=5024 s
and 502460=83.73min\frac{5024}{60} =83.73\, min