Solveeit Logo

Question

Question: what curve does $\sqrt{x - 6} + \sqrt{y - 5} = 4$ represent?...

what curve does x6+y5=4\sqrt{x - 6} + \sqrt{y - 5} = 4 represent?

A

Parabola

B

Ellipse

C

Hyperbola

D

none

Answer

Parabola

Explanation

Solution

Let X=x6X = x - 6 and Y=y5Y = y - 5. The equation transforms to X+Y=4\sqrt{X} + \sqrt{Y} = 4. For the square roots to be defined, X0X \ge 0 and Y0Y \ge 0. Rearrange the equation: Y=4X\sqrt{Y} = 4 - \sqrt{X}. For Y\sqrt{Y} to be real, 4X0    X4    X164 - \sqrt{X} \ge 0 \implies \sqrt{X} \le 4 \implies X \le 16. Similarly, Y16Y \le 16. Square both sides: Y=(4X)2=168X+XY = (4 - \sqrt{X})^2 = 16 - 8\sqrt{X} + X. Isolate the remaining square root term: 8X=16+XY8\sqrt{X} = 16 + X - Y. Square both sides again: (8X)2=(16+XY)2(8\sqrt{X})^2 = (16 + X - Y)^2. 64X=256+32(XY)+(XY)264X = 256 + 32(X - Y) + (X - Y)^2. 64X=256+32X32Y+X22XY+Y264X = 256 + 32X - 32Y + X^2 - 2XY + Y^2. Rearranging the terms, we get: X2+Y22XY32X32Y+256=0X^2 + Y^2 - 2XY - 32X - 32Y + 256 = 0. This is a general second-degree equation of the form AX2+BXY+CY2+DX+EY+F=0AX^2 + BXY + CY^2 + DX + EY + F = 0. Here, A=1A = 1, B=2B = -2, C=1C = 1. The discriminant of the conic section is B24ACB^2 - 4AC. B24AC=(2)24(1)(1)=44=0B^2 - 4AC = (-2)^2 - 4(1)(1) = 4 - 4 = 0. Since the discriminant is 00, the curve represented is a Parabola.