Solveeit Logo

Question

Question: What conclusion can be obtained from the observation that when the prongs of a sound making tuning f...

What conclusion can be obtained from the observation that when the prongs of a sound making tuning fork touch a beaker, the water gets splashed?
(A) That the prongs of the tuning fork are vibrating.
(B) The prongs of the tuning fork produce ultrasound.
(C) Waves are produced on the surface of water.
(D) All the above.

Explanation

Solution

Hint
We know that any object moving in Simple Harmonic Motion produces areas of compressions and rarefactions. We can make this analogical to our problem.
Formulae Used: y=Asin(ωt+ϕ)y = Asin\left( {\omega t + \phi } \right)
Where, yy is the displacement of the oscillating body at any time tt, AA is the amplitude, ω\omega is the angular velocity and ϕ\phi is the initial phase or epoch.

Complete step by step answer
First, let us calculate the total energy of the oscillating body.
Clearly, there are two type of energies contributing to the total energy of the body,
E=Ek+Ep\Rightarrow E = {E_k} + {E_p}
One is the Kinetic Energy, {E_k} = {\text{ }}\raise.5ex\hbox{ \scriptstyle 1 }\kern-.1em/ \kern-.15em\lower.25ex\hbox{ \scriptstyle 2 } {\text{ }}m{v^2}, where mm is the mass of the mass of the body and vv is its velocity.
And, the other is the Potential Energy, Ep= 0ykydy{E_p} = {\text{ }}\int_0^y {kydy}, where kk is the force or spring constant, yy is the displacement of the body at any time tt .
Now, if y=asin(ωt+ϕ)y = asin\left( {\omega t + \phi } \right)
And, we know v=dy/dtv = dy/dt
Thus, v= d[asin(ωt+ϕ)]/dtv = {\text{ }}d\left[ {asin\left( {\omega t + \phi } \right)} \right]/dt
After differentiation, we get
v= aωcos(ωt+ϕ)\Rightarrow v = {\text{ }}a\omega cos\left( {\omega t + \phi } \right)
Now,We get,
\Rightarrow {E_k} = {\text{ }}\raise.5ex\hbox{ \scriptstyle 1 }\kern-.1em/ \kern-.15em\lower.25ex\hbox{ \scriptstyle 2 } {\text{ }}m{\left[ {A\omega cos\left( {\omega t + \phi } \right)} \right]^2}
\Rightarrow \Rightarrow {E_k} = {\text{ }}\raise.5ex\hbox{ \scriptstyle 1 }\kern-.1em/ \kern-.15em\lower.25ex\hbox{ \scriptstyle 2 } {\text{ }}m{A^2}{\omega ^2}co{s^2}\left( {\omega t + \phi } \right) \cdot \cdot \cdot \cdot (1)
Now, we know,
From Newton’s Second Law, we get
F=mω2y\Rightarrow F = m{\omega ^2}y
Also, F=kyF = - ky
But the negative symbol only tells us about the direction of the force.
So, we can take only the magnitude for our problem.
So comparing, we get
mω2y=ky\Rightarrow m{\omega ^2}y = ky
k=mω2\Rightarrow k = m{\omega ^2}
Now,Acceleration,
a=d2y/dt2\Rightarrow a = {d^2}y/d{t^2}
a=Aω2sin(ωt+ϕ)=ω2y\Rightarrow a = - A{\omega ^2}sin\left( {\omega t + \phi } \right) = - {\omega ^2}y
Also, Ep=0ykydy{E_p} = \int_0^y {kydy}
Thus after integration, we get
\Rightarrow {E_p} = {\text{ }}\raise.5ex\hbox{ \scriptstyle 1 }\kern-.1em/ \kern-.15em\lower.25ex\hbox{ \scriptstyle 2 } {\text{ }}k{y^2}
Thus, E = {\text{ }}\raise.5ex\hbox{ \scriptstyle 1 }\kern-.1em/ \kern-.15em\lower.25ex\hbox{ \scriptstyle 2 } {\text{ }}m{A^2}{\omega ^2}co{s^2}\left( {\omega t + \phi } \right){\text{ }} + {\text{ }}\raise.5ex\hbox{ \scriptstyle 1 }\kern-.1em/ \kern-.15em\lower.25ex\hbox{ \scriptstyle 2 } {\text{ }}k{y^2}
After substituting all the values and then evaluating, we get
\Rightarrow E = {\text{ }}\raise.5ex\hbox{ \scriptstyle 1 }\kern-.1em/ \kern-.15em\lower.25ex\hbox{ \scriptstyle 2 } {\text{ }}m{A^2}{\omega ^2}
Now,Substituting k=mω2k = m{\omega ^2}, we get
\Rightarrow E = {\text{ }}\raise.5ex\hbox{ \scriptstyle 1 }\kern-.1em/ \kern-.15em\lower.25ex\hbox{ \scriptstyle 2 } {\text{ }}k{A^2}
This is the energy which is transmitted to the surroundings by an oscillating body producing regions of compressions and rarefactions which is apparent here by the splashing of water.
Thus, the correct option is (A).

Note
While calculating the potential energy, we took the limit of integration as 0 and y0{\text{ }}and{\text{ }}y. It is also possible to take y1and (y1+y){y_1} and {\text{ }}\left( {{y_1} + y} \right). Just the difference should be yy as it becomes easier to calculate.