Question
Question: What are the minimum and maximum values of the function \[x^{5} - 5x^{4} + 5x^{3} - 10\]...
What are the minimum and maximum values of the function
x5−5x4+5x3−10
A
−37,−9
B
10, 0
C
It has 2 minimum and 1 maximum values
D
It has 2 maximum and 1 minimum values
Answer
−37,−9
Explanation
Solution
y=x5−5x4+5x3−10
∴dxdy=5x4−20x3+15x2=5x2(x2−4x+3)
=5x2(x−3)(x−1)
dxdy=0, gives x=0,1,3 ......(i)
Now, dx2d2y=20x3−60x2+30x=10x(2x2−6x+3) and
dx3d3y=10(6x2−12x+3)
For x=0:dxdy=0,dx2d2y=0,dx3d3y=0,
∴ Neither minimum nor maximum
For x=1, dx2d2y=−10=negative,
∴ Maximum value ymax.
For x=3, dx2d2y=90=positive,
∴ Minimum value ymin..