Solveeit Logo

Question

Question: What are the minimum and maximum values of the function \[x^{5} - 5x^{4} + 5x^{3} - 10\]...

What are the minimum and maximum values of the function

x55x4+5x310x^{5} - 5x^{4} + 5x^{3} - 10

A

37,9- 37, - 9

B

10, 0

C

It has 2 minimum and 1 maximum values

D

It has 2 maximum and 1 minimum values

Answer

37,9- 37, - 9

Explanation

Solution

y=x55x4+5x310y = x^{5} - 5x^{4} + 5x^{3} - 10

dydx=5x420x3+15x2=5x2(x24x+3)\therefore\frac{dy}{dx} = 5x^{4} - 20x^{3} + 15x^{2} = 5x^{2}(x^{2} - 4x + 3)

=5x2(x3)(x1)5x^{2}(x - 3)(x - 1)

dydx=0\frac{dy}{dx} = 0, gives x=0,1,3x = 0,1,3 ......(i)

Now, d2ydx2=20x360x2+30x=10x(2x26x+3)\frac{d^{2}y}{dx^{2}} = 20x^{3} - 60x^{2} + 30x = 10x(2x^{2} - 6x + 3) and

d3ydx3=10(6x212x+3)\frac{d^{3}y}{dx^{3}} = 10(6x^{2} - 12x + 3)

For x=0x = 0:dydx=0,d2ydx2=0,d3ydx30\frac{dy}{dx} = 0,\frac{d^{2}y}{dx^{2}} = 0,\frac{d^{3}y}{dx^{3}} \neq 0,

\therefore Neither minimum nor maximum

For x=1x = 1, d2ydx2=10\frac{d^{2}y}{dx^{2}} = - 10=negative,

\therefore Maximum value ymax.y_{max.}

For x=3x = 3, d2ydx2=90\frac{d^{2}y}{dx^{2}} = 90=positive,

\therefore Minimum value ymin.y_{min.}.