Solveeit Logo

Question

Question: What are the methods used to solve the integral \(\int\limits_0^t {A\sin \left( {\omega t} \right)} ...

What are the methods used to solve the integral 0tAsin(ωt) dt\int\limits_0^t {A\sin \left( {\omega t} \right)} {\text{ }}dt

Explanation

Solution

In the integral calculus, we are to find a function whose differential is given. Thus, integration is a process which is the inverse of differentiation.
Let dF(x)dx=f(x)\dfrac{{dF\left( x \right)}}{{dx}} = f\left( x \right), then f(x)dx=F(x)+C\smallint f\left( x \right)dx = F\left( x \right) + C, where C is the integration constant.
We know, dcosxdx=sinx\dfrac{{d\cos x}}{{dx}} = - \sin x, then sinx dx=cosx+C\smallint \sin x{\text{ }}dx = - \cos x + C.
A change in the variable of integration often reduces an integral to one of the fundamental integrals.
The method in which we change the variable to some other variable is called the method of substitution.
When the integrand involves some trigonometric functions, we use some well-known identities to find the integrals.

Complete step-by-step answer:
Step 1: Substitute
I=0tAsin(ωt) dtI = \int\limits_0^t {A\sin \left( {\omega t} \right)} {\text{ }}dt
Take ωt=x\omega t = x
Differentiating both sides.
ω  dt=dx dt=dxω  \omega \;dt = dx \\\ \Rightarrow dt = \dfrac{{dx}}{\omega } \\\
Step 2: Change of limits
t=0x=0 t=tx=ωt  t = 0 \to x = 0 \\\ t = t \to x = \omega t \\\
Hence, the upper limit of the integral is ωt\omega t, and lower limit is 00.
I=1ω0ωAsinx dx\therefore I = \dfrac{1}{\omega }\int\limits_0^\omega {A\sin x} {\text{ }}dx
1ω×A[cosx]0ωt\Rightarrow \dfrac{1}{\omega } \times A\left. {\left[ { - \cos x} \right]} \right|_0^{\omega t}
Step 3: solve the limits
I=1ω×A[cos(ωt)+cos0] Aωcos(ωt)  I = \dfrac{1}{\omega } \times A\left[ { - \cos \left( {\omega t} \right) + \cos 0} \right] \\\ \Rightarrow - \dfrac{A}{\omega }\cos \left( {\omega t} \right) \\\
Final answer: The substitution method is mainly used to solve the integral 0tAsin(ωt) dt\int\limits_0^t {A\sin \left( {\omega t} \right)} {\text{ }}dt.

Note: After substituting the variables, you can also avoid changing the limits. Solve the integral without taking limits into considerate, before the final answer, substitute it (variable) back and solve with previous limits.
Steps are shown below:
I=1ωAsinx dxI = \dfrac{1}{\omega }\int {A\sin x{\text{ }}dx}
1ωA(cosx)\Rightarrow \dfrac{1}{\omega }A\left( { - \cos x} \right)
We know, x=ωtx = \omega t
I=1ωA(cosωt)0t\because I = \dfrac{1}{\omega }A\left( { - \cos \omega t} \right)_0^t
For variable tt, limits were 0t0 \to t.
Thus, solving limits we get:
I=1ω×A[cos(ωt)+cos0] Aωcos(ωt)  I = \dfrac{1}{\omega } \times A\left[ { - \cos \left( {\omega t} \right) + \cos 0} \right] \\\ \Rightarrow - \dfrac{A}{\omega }\cos \left( {\omega t} \right) \\\
Students must understand that the variable ttin the function Asin(ωt)A\sin \left( {\omega t} \right) and the variable ttin the limits 0tAsin(ωt) dt\int\limits_0^t {A\sin \left( {\omega t} \right)} {\text{ }}dtare both different even though they are same variable.
Variable ttin the function means that the function is dependent on tt, we differentiate or integrate the function by dtdt.
Variable ttin the limits is only signifying the upper limits or limits of the function.